Skip to main content
U.S. flag

An official website of the United States government

The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring

September 8, 2011

The City of Baltimore, Maryland, and parts of five surrounding counties obtain their water from Loch Raven and Liberty Reservoirs. A third reservoir, Prettyboy, is used to resupply Loch Raven Reservoir. Management of the watershed conditions for each reservoir is a shared responsibility by agreement among City, County, and State jurisdictions. The most recent (2005) Baltimore Reservoir Watershed Management Agreement (RWMA) called for continued and improved water-quality monitoring in the reservoirs and selected watershed tributaries. The U.S. Geological Survey (USGS) conducted a retrospective review of the effectiveness of monitoring data obtained and analyzed by the RWMA jurisdictions from 1981 through 2007 to help identify possible improvements in the monitoring program to address RWMA water-quality concerns. Long-term water-quality concerns include eutrophication and sedimentation in the reservoirs, and elevated concentrations of (a) nutrients (nitrogen and phosphorus) being transported from the major tributaries to the reservoirs, (b) iron and manganese released from reservoir bed sediments during periods of deep-water anoxia, (c) mercury in higher trophic order game fish in the reservoirs, and (d) bacteria in selected reservoir watershed tributaries. Emerging concerns include elevated concentrations of sodium, chloride, and disinfection by-products (DBPs) in the drinking water from both supply reservoirs. Climate change and variability also could be emerging concerns, affecting seasonal patterns, annual trends, and drought occurrence, which historically have led to declines in reservoir water quality. Monitoring data increasingly have been used to support the development of water-quality models. The most recent (2006) modeling helped establish an annual sediment Total Maximum Daily Load to Loch Raven Reservoir, and instantaneous and 30-day moving average water-quality endpoints for chlorophyll-a (chl-a) and dissolved oxygen (DO) in Loch Raven and Prettyboy Reservoirs. Modelers cited limitations in data, including too few years with sufficient stormflow data, and (or) a lack of (readily available) data, for selected tributary and reservoir hydrodynamic, water-quality, and biotic conditions. Reservoir monitoring also is too infrequent to adequately address the above water-quality endpoints. Monitoring data also have been effectively used to generally describe trophic states, changes in trophic state or conditions related to trophic state, and in selected cases, trends in water-quality or biotic parameters that reflect RWMA water-quality concerns. Limitations occur in the collection, aggregation, analyses, and (or) archival of monitoring data in relation to most RWMA water-quality concerns. Trophic, including eutrophic, conditions have been broadly described for each reservoir in terms of phytoplankton production, and variations in production related to typical seasonal patterns in the concentration of DO, and hypoxic to anoxic conditions, where the latter have led to elevated concentrations of iron and manganese in reservoir and supply waters. Trend analyses for the period 1981-2004 have shown apparent declines in production (algal counts and possibly chl-a). The low frequency of phytoplankton data collection (monthly or bimonthly, depending on the reservoir), however, limits the development of a model to quantitatively describe and relate temporal variations in phytoplankton production including seasonal succession to changes in trophic states or other reservoir water-quality or biotic conditions. Extensive monitoring for nutrients, which, in excessive amounts, cause eutrophic conditions, has been conducted in the watershed tributaries and reservoirs. Data analyses (1980-90s) have (a) identified seasonal patterns in concentrations, (b) characterized loads from (non)point sources, and (c) shown that different seasonal patterns and trends in nutrient concentrations occur between watershed tributaries and downstream reservoir.

Publication Year 2011
Title The water-quality monitoring program for the Baltimore reservoir system, 1981-2007—Description, review and evaluation, and framework integration for enhanced monitoring
DOI 10.3133/sir20115101
Authors Michael T. Koterba, Marcus C. Waldron, Tamara E.C. Kraus
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2011-5101
Index ID sir20115101
Record Source USGS Publications Warehouse
USGS Organization Maryland-Delaware-District of Columbia Water Science Center