Skip to main content
U.S. flag

An official website of the United States government

Accounting for spatio-temporal variation in catchability in joint species distribution models

June 7, 2023

1: Estimating relative abundance is critical for informing conservation and management efforts and for making inferences about the effects of environmental change on populations. Freshwater fisheries span large geographic regions, occupy diverse habitats, and consist of varying species assemblages. Monitoring schemes used to sample these diverse populations often result in populations being sampled at different times and under different Varying sampling conditions can bias estimates of abundance when compared across time, location, and species, and properly accounting for these biases is critical for making inference.

2: We develop a joint species distribution model (JSDM) that accounts for varying sampling conditions due to the environment and time of sampling when estimating relative abundance. The novelty of our JSDM is that we explicitly model sampling effort as the product of known quantities based on time and gear type and an unknown functional relationship to capture seasonal variation in species life history.

3: We use the model to study relative abundance of six freshwater fish species across the state of Minnesota, USA.
Our model enables estimates of relative abundance to be compared both within and across species and lakes, and captures the inconsistent sampling present in the data. We discuss how gear type, water temperature, and day of the year impact catchability for each species at the lake level and throughout a year. We compare our estimates of relative abundance to those obtained from a model that assumes constant catchability to highlight important differences within and across lakes and species.

4: Our method illustrates that assumptions relating indices of abundance to observed catch data can greatly impact model inference obtained from JSDMs. While our focus is on freshwater fisheries, this model architecture can be adopted to other systems where catchability may vary as a function of space, time, or species.

Publication Year 2023
Title Accounting for spatio-temporal variation in catchability in joint species distribution models
DOI 10.5066/P9DALGBL
Authors Tyler Wagner, Joshua North, Erin Schliep, Gretchen Hansen, Holly Kundel, Christopher Custer, Paul McLaughlin
Product Type Software Release
Record Source USGS Digital Object Identifier Catalog
USGS Organization Cooperative Research Units