Carlin J. Green
Carlin Green is a Geologist with the USGS Geology, Energy & Minerals (GEM) Science Center in Reston, VA.
Carlin began his career at the USGS as a student while studying the mineralogy of iron resources in the Lake Superior region. He earned his Master’s degree in Earth Systems Science from George Mason University in 2017. Presently, his work focuses on the mineralogical characterization of critical element resources and mineral resource assessments.
Professional Experience
2018 - Present: Geologist, USGS, Reston VA
2015 - 2017: Pathways Student, USGS, Reston VA
Education and Certifications
M.S. Earth Systems Science, George Mason University, 2017
B.S. Geology, George Mason University, 2015
Science and Products
Filter Total Items: 25
Trace element composition and molecular-scale speciation characterization of sphalerite from Central and East Tennessee mining districts, Red Dog mining district (AK), and Metaline mining district (WA) Trace element composition and molecular-scale speciation characterization of sphalerite from Central and East Tennessee mining districts, Red Dog mining district (AK), and Metaline mining district (WA)
Germanium (Ge) is an element deemed critical globally, and used in electronics, communication, and defense applications. The supply of Ge is limited and as demand for it increases, its criticality increases. Germanium is exclusively recovered as a byproduct of either coal mining or zinc (Zn) mining, and the main mineral hosting Ge in Zn deposits is sphalerite (ZnS). However, the...
Pre-mining environmental baseline characterization of the Hajigak iron deposit: 2019 field season Pre-mining environmental baseline characterization of the Hajigak iron deposit: 2019 field season
These data include geochemical analyses of rock, mine waste, sediment, soil, and water samples collected from the Hajigak iron deposit, Bamyan and Wardak Provinces, Afghanistan in 2019.
Pre-mining environmental baseline characterization of the Aynak copper deposit: 2019 field season Pre-mining environmental baseline characterization of the Aynak copper deposit: 2019 field season
These data include geochemical analyses of rock, mine waste, sediment, and soil samples collected from the Aynak copper deposit, Logar Province, Afghanistan in 2019. In addition, these data include geochemical analyses of water samples collected from the Aynak copper deposit, Logar Province, Afghanistan in 2019.
Solid and aqueous geochemistry for mill tailings and other ore processing materials Solid and aqueous geochemistry for mill tailings and other ore processing materials
These worksheets contain data from geochemical analyses of solid mill tailings and other ore processing materials from worldwide localities, and leachates from those samples.
Mineral abundances within bulk and size-fractionated mine waste from the Tar Creek Superfund Site, Tri-State Mining District, Oklahoma, U.S.A. Mineral abundances within bulk and size-fractionated mine waste from the Tar Creek Superfund Site, Tri-State Mining District, Oklahoma, U.S.A.
Mineral abundances within bulk and size-fractionated mine waste from sampled historical waste piles from the Tar Creek Superfund Site, Oklahoma, U.S.A., were determined by Mineral Liberation Analysis (MLA) and X-Ray Diffraction (XRD). Data and methods reported are part of a research study published below in the 'Related External Resources' section.
Molecular speciation of Ge within sphalerite, hemimorphite, and quartz from mine waste from the Tar Creek Superfund Site, Tri-State Mining District, Oklahoma, U.S.A. Molecular speciation of Ge within sphalerite, hemimorphite, and quartz from mine waste from the Tar Creek Superfund Site, Tri-State Mining District, Oklahoma, U.S.A.
Oxidation state and bonding environment of Ge in minerals within mine waste from sampled historical waste piles from the Tar Creek Superfund Site, Oklahoma, U.S. were determined by linear combination fits from x-ray absorption near edge spectroscopy (XANES) analysis. Ge content in quartz within these wastes was determined using XANES edge steps, and Ge content in sphalerite was compared...
Science and Products
Filter Total Items: 25
Trace element composition and molecular-scale speciation characterization of sphalerite from Central and East Tennessee mining districts, Red Dog mining district (AK), and Metaline mining district (WA) Trace element composition and molecular-scale speciation characterization of sphalerite from Central and East Tennessee mining districts, Red Dog mining district (AK), and Metaline mining district (WA)
Germanium (Ge) is an element deemed critical globally, and used in electronics, communication, and defense applications. The supply of Ge is limited and as demand for it increases, its criticality increases. Germanium is exclusively recovered as a byproduct of either coal mining or zinc (Zn) mining, and the main mineral hosting Ge in Zn deposits is sphalerite (ZnS). However, the...
Pre-mining environmental baseline characterization of the Hajigak iron deposit: 2019 field season Pre-mining environmental baseline characterization of the Hajigak iron deposit: 2019 field season
These data include geochemical analyses of rock, mine waste, sediment, soil, and water samples collected from the Hajigak iron deposit, Bamyan and Wardak Provinces, Afghanistan in 2019.
Pre-mining environmental baseline characterization of the Aynak copper deposit: 2019 field season Pre-mining environmental baseline characterization of the Aynak copper deposit: 2019 field season
These data include geochemical analyses of rock, mine waste, sediment, and soil samples collected from the Aynak copper deposit, Logar Province, Afghanistan in 2019. In addition, these data include geochemical analyses of water samples collected from the Aynak copper deposit, Logar Province, Afghanistan in 2019.
Solid and aqueous geochemistry for mill tailings and other ore processing materials Solid and aqueous geochemistry for mill tailings and other ore processing materials
These worksheets contain data from geochemical analyses of solid mill tailings and other ore processing materials from worldwide localities, and leachates from those samples.
Mineral abundances within bulk and size-fractionated mine waste from the Tar Creek Superfund Site, Tri-State Mining District, Oklahoma, U.S.A. Mineral abundances within bulk and size-fractionated mine waste from the Tar Creek Superfund Site, Tri-State Mining District, Oklahoma, U.S.A.
Mineral abundances within bulk and size-fractionated mine waste from sampled historical waste piles from the Tar Creek Superfund Site, Oklahoma, U.S.A., were determined by Mineral Liberation Analysis (MLA) and X-Ray Diffraction (XRD). Data and methods reported are part of a research study published below in the 'Related External Resources' section.
Molecular speciation of Ge within sphalerite, hemimorphite, and quartz from mine waste from the Tar Creek Superfund Site, Tri-State Mining District, Oklahoma, U.S.A. Molecular speciation of Ge within sphalerite, hemimorphite, and quartz from mine waste from the Tar Creek Superfund Site, Tri-State Mining District, Oklahoma, U.S.A.
Oxidation state and bonding environment of Ge in minerals within mine waste from sampled historical waste piles from the Tar Creek Superfund Site, Oklahoma, U.S. were determined by linear combination fits from x-ray absorption near edge spectroscopy (XANES) analysis. Ge content in quartz within these wastes was determined using XANES edge steps, and Ge content in sphalerite was compared...