Christine A Goulet (Former Employee)
Science and Products
Directions
Information to help you plan your visit to the Earthquake Science Center.
Filter Total Items: 14
U.S. Geological Survey Earthquake Hazards Program decadal science strategy, 2024–33
Executive Summary Earthquakes represent one of our Nation’s most significant and costly natural hazards, with estimated annual loses from earthquakes close to $15 billion in 2023. Over the past two centuries, 37 U.S. States have experienced an earthquake exceeding a magnitude of 5, and 50 percent of States have a significant potential for future damaging shaking; these statistics speak to the need
Authors
Gavin P. Hayes, Annemarie S. Baltay Sundstrom, William D. Barnhart, Michael L. Blanpied, Lindsay A. Davis, Paul S. Earle, Ned Field, Jill M. Franks, Douglas D. Given, Ryan D. Gold, Christine A Goulet, Michelle M. Guy, Jeanne L. Hardebeck, Nico Luco, Frederick Pollitz, Adam T. Ringler, Katherine M. Scharer, Steven Sobieszczyk, Valerie I. Thomas, Cecily J. Wolfe
Using open-science workflow tools to produce SCEC CyberShake physics-based probabilistic seismic hazard models
The Statewide (formerly Southern) California Earthquake Center (SCEC) conducts multidisciplinary earthquake system science research that aims to develop predictive models of earthquake processes, and to produce accurate seismic hazard information that can improve societal preparedness and resiliency to earthquake hazards. As part of this program, SCEC has developed the CyberShake platform, which c
Authors
Scott Callaghan, Phillip J. Maechling, Fabio Silva, Mei-Hui Su, Kevin R. Milner, Robert Graves, Kim Olsen, Yifeng Cui, Karan Vahi, Albert Kottke, Christine A Goulet, Ewa Deelman, Tom Jordan, Yehuda Ben-Zion
Validating predicted site response in sedimentary basins from 3D ground motion simulations
We introduce procedures to validate site response in sedimentary basins as predicted using ground motion simulations. These procedures aim to isolate contributions of site response to computed intensity measures relative to those from seismic source and path effects. In one of the validation procedures, simulated motions are analyzed in the same manner as earthquake recordings to derive non-ergodi
Authors
Chukwuebuka C Nweke, Jonathan P. Stewart, Robert Graves, Christine A. Goulet, Scott J Brandenberg
NGA-East Ground-Motion Characterization model part I: Summary of products and model development
In this article, we present an overview of the research project NGA-East, Next Generation Attenuation for Central and Eastern North America (CENA), and summarize the key methodology and products. The project was tasked with developing a new ground motion characterization (GMC) model for CENA. The final NGA-East GMC model includes a set of 17 median ground motion models (GMMs) for peak ground accel
Authors
Christine A. Goulet, Yousef Bozorgnia, Nicolas Kuehn, Linda Al Atik, Robert Youngs, Robert Graves, Gail M. Atkinson
Selection of random vibration theory procedures for the NGA-East project and ground-motion modeling
Traditional ground-motion models (GMMs) are used to compute pseudo-spectral acceleration (PSA) from future earthquakes and are generally developed by regression of PSA using a physics-based functional form. PSA is a relatively simple metric that correlates well with the response of several engineering systems and is a metric commonly used in engineering evaluations; however, characteristics of the
Authors
Albert R. Kottke, Norman A. Abrahamson, David Boore, Yousef Bozorgina, Christine A. Goulet, Justin Hollenback, Tadahiro Kishida, Olga-Joan Ktenidou, Ellen Rathje, Walt Silva, Eric M. Thompson, Xiaoyue Wang
NGA-East ground-motion characterization model Part II: Implementation and hazard implications
As a companion article to Goulet et al., we describe implementation of the NGA-East ground motion characterization (GMC) model in probabilistic seismic hazard analysis (PSHA) for sites in the Central and Eastern United States (CEUS). We present extensions to the EPRI/DOE/NRC seismic source characterization (SSC) model for the CEUS needed for full implementation of NGA-East. Comparisons are present
Authors
Robert Youngs, Christine A. Goulet, Yousef Bozorgnia, Nicolas Kuehn, Linda Al Atik, Robert Graves, Gail M. Atkinson
Toward physics-based nonergodic PSHA: A prototype fully-deterministic seismic hazard model for southern California
We present a nonergodic framework for probabilistic seismic‐hazard analysis (PSHA) that is constructed entirely of deterministic, physical models. The use of deterministic ground‐motion simulations in PSHA calculations is not new (e.g., CyberShake), but prior studies relied on kinematic rupture generators to extend empirical earthquake rupture forecasts. Fully dynamic models, which simulate ruptur
Authors
Kevin R. Milner, Bruce E. Shaw, Christine A. Goulet, Keith B. Richards-Dinger, Scott Callaghan, Thomas H. Jordan, James H. Dieterich, Ned Field
A subset of CyberShake ground-motion time series for response-history analysis
This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of availa
Authors
Jack W. Baker, Sanaz Rezaeian, Christine A. Goulet, Nico Luco, Ganyu Teng
Evaluation of seismic hazard models with fragile geologic features
We provide an overview of a 2019 workshop on the use of fragile geologic features (FGFs) to evaluate seismic hazard models. FGFs have been scarcely utilized in the evaluation of seismic hazard models, despite nearly 30 yr having passed since the first recognition of their potential value. Recently, several studies have begun to focus on the implementation of FGFs in seismic hazard modeling. The wo
Authors
Mark W. Stirling, Mike Oskin, J. Ramon Arrowsmith, Anna H. Rood, Christine A. Goulet, Lisa Grant Ludwig, Tamarah King, Albert Kottke, Julian C. Lozos, Chris L M Madugo, Devin McPhillips, Dylan Rood, Norman Sleep, Christine Wittich
Airborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California
Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the M 6.4 foreshock, occurred on July 4 on a ~17 km long, northeast-southwest oriented, left-lateral zone of faulting. Following the M 7.1 mainshock on July 5 (local time), extensive northwest-southeast-oriented, right-lateral faulting was then also mapped along a ~50 km long zone of faults, including sub-paral
Authors
Kenneth W. Hudnut, Benjamin A. Brooks, Katherine M. Scharer, Janis L. Hernandez, Timothy E. Dawson, Michael E. Oskin, J. Ramon Arrowsmith, Christine A. Goulet, Kelly Blake, Matthew A. Boggie, Stephan Bork, Craig L. Glennie, J.C. Fernandez-Diaz, Abhinav Singhania, Darren Hauser, Sven Sorhus
Science plan for improving three-dimensional seismic velocity models in the San Francisco Bay region, 2019–24
This five-year science plan outlines short-term and long-term goals for improving three-dimensional seismic velocity models in the greater San Francisco Bay region as well as how to foster a community effort in reaching those goals. The short-term goals focus on improving the current U.S. Geological Survey San Francisco Bay region geologic and seismic velocity model using existing data. The long-t
Authors
Brad T. Aagaard, Russell W. Graymer, Clifford H. Thurber, Arthur J. Rodgers, Taka'aki Taira, Rufus D. Catchings, Christine A. Goulet, Andreas Plesch
The science, engineering applications, and policy implications of simulation-based PSHA
We summarize scientific methods for developing probabilistic seismic hazard assessments from 3-D earthquake ground motion simulations, describe current use of simulated ground motions for engineering applications, and discuss on-going efforts to incorporate these effects in the U.S. national seismic hazard model. The 3-D simulations provide important, additional information about earthquake ground
Authors
Morgan P. Moschetti, Sandra P. Chang, C.B Crouse, Arthur Frankel, Robert Graves, H Puangnak, Nico Luco, Christine A. Goulet, Sanaz Rezaeian, Allison Shumway, Peter M. Powers, Mark D. Petersen, Scott Callaghan, Kevin R. Milner, T.H. Jordan
Science and Products
Directions
Information to help you plan your visit to the Earthquake Science Center.
Filter Total Items: 14
U.S. Geological Survey Earthquake Hazards Program decadal science strategy, 2024–33
Executive Summary Earthquakes represent one of our Nation’s most significant and costly natural hazards, with estimated annual loses from earthquakes close to $15 billion in 2023. Over the past two centuries, 37 U.S. States have experienced an earthquake exceeding a magnitude of 5, and 50 percent of States have a significant potential for future damaging shaking; these statistics speak to the need
Authors
Gavin P. Hayes, Annemarie S. Baltay Sundstrom, William D. Barnhart, Michael L. Blanpied, Lindsay A. Davis, Paul S. Earle, Ned Field, Jill M. Franks, Douglas D. Given, Ryan D. Gold, Christine A Goulet, Michelle M. Guy, Jeanne L. Hardebeck, Nico Luco, Frederick Pollitz, Adam T. Ringler, Katherine M. Scharer, Steven Sobieszczyk, Valerie I. Thomas, Cecily J. Wolfe
Using open-science workflow tools to produce SCEC CyberShake physics-based probabilistic seismic hazard models
The Statewide (formerly Southern) California Earthquake Center (SCEC) conducts multidisciplinary earthquake system science research that aims to develop predictive models of earthquake processes, and to produce accurate seismic hazard information that can improve societal preparedness and resiliency to earthquake hazards. As part of this program, SCEC has developed the CyberShake platform, which c
Authors
Scott Callaghan, Phillip J. Maechling, Fabio Silva, Mei-Hui Su, Kevin R. Milner, Robert Graves, Kim Olsen, Yifeng Cui, Karan Vahi, Albert Kottke, Christine A Goulet, Ewa Deelman, Tom Jordan, Yehuda Ben-Zion
Validating predicted site response in sedimentary basins from 3D ground motion simulations
We introduce procedures to validate site response in sedimentary basins as predicted using ground motion simulations. These procedures aim to isolate contributions of site response to computed intensity measures relative to those from seismic source and path effects. In one of the validation procedures, simulated motions are analyzed in the same manner as earthquake recordings to derive non-ergodi
Authors
Chukwuebuka C Nweke, Jonathan P. Stewart, Robert Graves, Christine A. Goulet, Scott J Brandenberg
NGA-East Ground-Motion Characterization model part I: Summary of products and model development
In this article, we present an overview of the research project NGA-East, Next Generation Attenuation for Central and Eastern North America (CENA), and summarize the key methodology and products. The project was tasked with developing a new ground motion characterization (GMC) model for CENA. The final NGA-East GMC model includes a set of 17 median ground motion models (GMMs) for peak ground accel
Authors
Christine A. Goulet, Yousef Bozorgnia, Nicolas Kuehn, Linda Al Atik, Robert Youngs, Robert Graves, Gail M. Atkinson
Selection of random vibration theory procedures for the NGA-East project and ground-motion modeling
Traditional ground-motion models (GMMs) are used to compute pseudo-spectral acceleration (PSA) from future earthquakes and are generally developed by regression of PSA using a physics-based functional form. PSA is a relatively simple metric that correlates well with the response of several engineering systems and is a metric commonly used in engineering evaluations; however, characteristics of the
Authors
Albert R. Kottke, Norman A. Abrahamson, David Boore, Yousef Bozorgina, Christine A. Goulet, Justin Hollenback, Tadahiro Kishida, Olga-Joan Ktenidou, Ellen Rathje, Walt Silva, Eric M. Thompson, Xiaoyue Wang
NGA-East ground-motion characterization model Part II: Implementation and hazard implications
As a companion article to Goulet et al., we describe implementation of the NGA-East ground motion characterization (GMC) model in probabilistic seismic hazard analysis (PSHA) for sites in the Central and Eastern United States (CEUS). We present extensions to the EPRI/DOE/NRC seismic source characterization (SSC) model for the CEUS needed for full implementation of NGA-East. Comparisons are present
Authors
Robert Youngs, Christine A. Goulet, Yousef Bozorgnia, Nicolas Kuehn, Linda Al Atik, Robert Graves, Gail M. Atkinson
Toward physics-based nonergodic PSHA: A prototype fully-deterministic seismic hazard model for southern California
We present a nonergodic framework for probabilistic seismic‐hazard analysis (PSHA) that is constructed entirely of deterministic, physical models. The use of deterministic ground‐motion simulations in PSHA calculations is not new (e.g., CyberShake), but prior studies relied on kinematic rupture generators to extend empirical earthquake rupture forecasts. Fully dynamic models, which simulate ruptur
Authors
Kevin R. Milner, Bruce E. Shaw, Christine A. Goulet, Keith B. Richards-Dinger, Scott Callaghan, Thomas H. Jordan, James H. Dieterich, Ned Field
A subset of CyberShake ground-motion time series for response-history analysis
This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of availa
Authors
Jack W. Baker, Sanaz Rezaeian, Christine A. Goulet, Nico Luco, Ganyu Teng
Evaluation of seismic hazard models with fragile geologic features
We provide an overview of a 2019 workshop on the use of fragile geologic features (FGFs) to evaluate seismic hazard models. FGFs have been scarcely utilized in the evaluation of seismic hazard models, despite nearly 30 yr having passed since the first recognition of their potential value. Recently, several studies have begun to focus on the implementation of FGFs in seismic hazard modeling. The wo
Authors
Mark W. Stirling, Mike Oskin, J. Ramon Arrowsmith, Anna H. Rood, Christine A. Goulet, Lisa Grant Ludwig, Tamarah King, Albert Kottke, Julian C. Lozos, Chris L M Madugo, Devin McPhillips, Dylan Rood, Norman Sleep, Christine Wittich
Airborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California
Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the M 6.4 foreshock, occurred on July 4 on a ~17 km long, northeast-southwest oriented, left-lateral zone of faulting. Following the M 7.1 mainshock on July 5 (local time), extensive northwest-southeast-oriented, right-lateral faulting was then also mapped along a ~50 km long zone of faults, including sub-paral
Authors
Kenneth W. Hudnut, Benjamin A. Brooks, Katherine M. Scharer, Janis L. Hernandez, Timothy E. Dawson, Michael E. Oskin, J. Ramon Arrowsmith, Christine A. Goulet, Kelly Blake, Matthew A. Boggie, Stephan Bork, Craig L. Glennie, J.C. Fernandez-Diaz, Abhinav Singhania, Darren Hauser, Sven Sorhus
Science plan for improving three-dimensional seismic velocity models in the San Francisco Bay region, 2019–24
This five-year science plan outlines short-term and long-term goals for improving three-dimensional seismic velocity models in the greater San Francisco Bay region as well as how to foster a community effort in reaching those goals. The short-term goals focus on improving the current U.S. Geological Survey San Francisco Bay region geologic and seismic velocity model using existing data. The long-t
Authors
Brad T. Aagaard, Russell W. Graymer, Clifford H. Thurber, Arthur J. Rodgers, Taka'aki Taira, Rufus D. Catchings, Christine A. Goulet, Andreas Plesch
The science, engineering applications, and policy implications of simulation-based PSHA
We summarize scientific methods for developing probabilistic seismic hazard assessments from 3-D earthquake ground motion simulations, describe current use of simulated ground motions for engineering applications, and discuss on-going efforts to incorporate these effects in the U.S. national seismic hazard model. The 3-D simulations provide important, additional information about earthquake ground
Authors
Morgan P. Moschetti, Sandra P. Chang, C.B Crouse, Arthur Frankel, Robert Graves, H Puangnak, Nico Luco, Christine A. Goulet, Sanaz Rezaeian, Allison Shumway, Peter M. Powers, Mark D. Petersen, Scott Callaghan, Kevin R. Milner, T.H. Jordan