Skip to main content
U.S. flag

An official website of the United States government

Airborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California

April 22, 2020

Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the M 6.4 foreshock, occurred on July 4 on a ~17 km long, northeast-southwest oriented, left-lateral zone of faulting. Following the M 7.1 mainshock on July 5 (local time), extensive northwest-southeast-oriented, right-lateral faulting was then also mapped along a ~50 km long zone of faults, including sub-parallel splays in several areas. The largest slip was observed in the epicentral area, and crossing the dry lakebed of China Lake to the southeast. Surface fault rupture mapping by a large team, reported elsewhere, was used to guide the airborne data acquisition reported here. Rapid rupture mapping allowed for accurate and efficient flight line planning for the high-resolution lidar and aerial photography. Flight line planning trade-offs were considered to allocate the medium (25 pulses per square meter, or ppsm) and high resolution (80 ppsm) lidar data collection polygons. The National Center for Airborne Laser Mapping (NCALM) acquired the airborne imagery with a Titan multispectral lidar system and DiMAC aerial digital camera, and USGS acquired GPS ground control data. This effort required extensive coordination with the Navy as much of the airborne data acquisition occurred within their restricted airspace at the China Lake Ranges.

Publication Year 2020
Title Airborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California
DOI 10.1785/0220190338
Authors Kenneth W. Hudnut, Benjamin A. Brooks, Katherine M. Scharer, Janis L. Hernandez, Timothy E. Dawson, Michael E. Oskin, J. Ramon Arrowsmith, Christine A. Goulet, Kelly Blake, Matthew A. Boggie, Stephan Bork, Craig L. Glennie, J.C. Fernandez-Diaz, Abhinav Singhania, Darren Hauser, Sven Sorhus
Publication Type Article
Publication Subtype Journal Article
Series Title Seismological Research Letters
Index ID 70209736
Record Source USGS Publications Warehouse
USGS Organization Earthquake Science Center