Dara E Goldberg
Dara Goldberg is a Research Geophysicist in the Earthquake Hazards Program.
Science and Products
External Grants - Overview
The U.S. Geological Survey (USGS) provides support for research that will assist in achieving the goals of the Earthquake Hazards Program. The goal is to mitigate earthquake losses that can occur in many parts of the nation by providing earth science data and assessments essential for land-use planning, engineering design, and emergency preparedness decisions.
Supporting Data for "Subduction intraslab-interface fault interactions in the 2022 Mw 6.4 Ferndale, California, earthquake sequence"
This data release pertains to the December 20, 2022, Mw 6.4 Ferndale, California, earthquake and complements the following publication: Shelly, D. R., D. E. Goldberg, K. Z. Materna, R. J. Skoumal, J. L. Hardebeck., C. E. Yoon, W. L. Yeck, and P. S. Earle (2024). Subduction intraslab-interface fault interactions in the 2022 Mw 6.4 Ferndale, California, earthquake sequence, Science Advances, https:/
Supporting Data and Models for Characterizing the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence
This data release pertains to the February 2023 Kahramanmaraş, Türkiye earthquake sequence and complements the following publication:
Goldberg, D.E. et al. (2023) Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence, The Seismic Record. (xx), 1, doi: 10.1785/0320230009.
Child Items "2023-02-06 Mw7.8 Pazarcık Earthquake Finite Fault Data and Model" and "2023-02-
Regional and Teleseismic Observations for Finite-Fault Product
This data release complements the following publication: Goldberg, D. E., P. Koch, D. Melgar, S. Riquelme, and W. L. Yeck (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling, Seismol. Res. Lett. XX, 1–16, doi: 10.1785/0220220047. Rapid finite-fault models are published by the US Geological Survey (USGS) National Earthquake Informati
High-rate GNSS Observations and Finite Fault Models of Moderate to Large Earthquakes
This database complements the following publication: Goldberg, D. E., D. Melgar, G. P. Hayes, B. W. Crowell, and V. J. Sahakian (2021). A Ground-Motion Model for GNSS Peak Ground Displacement, Bulletin of the Seismological Society of America XX, 1-15, doi: 10.1785/0120210042. High-rate Global Navigations Satellite Systems (GNSS) data is recognized as a valuable complement to traditional inertial
Regional Finite-Fault Models of the 2019 Mw7.1 Ridgecrest, California, Earthquake
This dataset complements the following publication: Goldberg, D.E. & Haynie, K.L (2021) Ready for real-time: Performance of Global Navigation Satellite Systems in 2019 Mw7.1 Ridgecrest, California, rapid response products, Seismological Research Letters, doi: 10.1785/0220210278. The availability of low-latency, high-rate Global Navigation Satellite Systems (GNSS) waveforms makes it possible to com
Rapid Source Characterization of the 2023 Mw 6.8 Al Haouz, Morocco, Earthquake
The U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) estimates source characteristics of significant damaging earthquakes, aiming to place events within their seismotectonic framework. Contextualizing the 8 September 2023, Mw 6.8 Al Haouz, Morocco, earthquake is challenging, because it occurred in an enigmatic region of active surface faulting, and low seismicity yet pro
Authors
William L. Yeck, Alexandra Elise Hatem, Dara Elyse Goldberg, William D. Barnhart, Jessica Ann Thompson Jobe, David R. Shelly, Antonio Villasenor, Harley Benz, Paul S. Earle
Rapid characterization of the February 2023 Kahramanmaraş, Turkey, earthquake sequence
The 6 February 2023 Mw 7.8 Pazarcık and subsequent Mw 7.5 Elbistan earthquakes generated strong ground shaking that resulted in catastrophic human and economic loss across south‐central Türkiye and northwest Syria. The rapid characterization of the earthquakes, including their location, size, fault geometries, and slip kinematics, is critical to estimate the impact of significant seismic events.
Authors
Dara Elyse Goldberg, Tuncay Taymaz, Nadine G. Reitman, Alexandra Elise Hatem, Seda Yolsal-Çevikbilen, William D. Barnhart, Tahir Serkan Irmak, David J. Wald, Taylan Öcalan, William L. Yeck, Berkan Özkan, Jessica Ann Thompson Jobe, David R. Shelly, Eric M. Thompson, Christopher DuRoss, Paul S. Earle, Richard W. Briggs, Harley M. Benz, Ceyhun Erman, Ali Hasan Doğan, Cemali Altuntaş
Dense geophysical observations reveal a triggered, concurrent multi-fault rupture at the Mendocino Triple Junction
A central question of earthquake science is how far ruptures can jump from one fault to another, because cascading ruptures can increase the shaking of a seismic event. Earthquake science relies on earthquake catalogs and therefore how complex ruptures get documented and cataloged has important implications. Recent investments in geophysical instrumentation allow us to resolve increasingly complex
Authors
William L. Yeck, David R. Shelly, Dara Elyse Goldberg, Kathryn Zerbe Materna, Paul S. Earle
Beyond the teleseism: Introducing regional seismic and geodetic data into routine USGS finite‐fault modeling
The U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) routinely produces finite‐fault models following significant earthquakes. These models are spatiotemporal estimates of coseismic slip critical to constraining downstream response products such as ShakeMap ground motion estimates, Prompt Assessment of Global Earthquake for Response loss estimates, and ground failure ass
Authors
Dara Elyse Goldberg, Pablo Koch, Diego Melgar, Sebastian Riquelme, William L. Yeck
Ready for real time: Performance of Global Navigation Satellite System in 2019 Mw 7.1 Ridgecrest, California, rapid response products
Global Navigation Satellite Systems (GNSSs) have undergone notable advancement in the last few decades, leading to the availability of a dataset with capabilities well beyond its original intended purpose. The proliferation of high‐rate (1 Hz or greater) GNSS receivers in areas of seismological interest now allows for routine consideration of dynamic earthquake ground motions, with centimeter‐leve
Authors
Dara Elyse Goldberg, Kirstie Lafon Haynie
A ground motion model for GNSS peak ground displacement
We present an updated ground‐motion model (GMM) for MwMw 6–9 earthquakes using Global Navigation Satellite Systems (GNSS) observations of the peak ground displacement (PGD). Earthquake GMMs inform a range of Earth science and engineering applications, including source characterization, seismic hazard evaluations, loss estimates, and seismic design standards. A typical GMM is characterized by simpl
Authors
Dara Elyse Goldberg, Diego Melgar, Gavin P. Hayes, Valerie J. Sahakian, Brendan W. Crowell
Science and Products
External Grants - Overview
The U.S. Geological Survey (USGS) provides support for research that will assist in achieving the goals of the Earthquake Hazards Program. The goal is to mitigate earthquake losses that can occur in many parts of the nation by providing earth science data and assessments essential for land-use planning, engineering design, and emergency preparedness decisions.
Supporting Data for "Subduction intraslab-interface fault interactions in the 2022 Mw 6.4 Ferndale, California, earthquake sequence"
This data release pertains to the December 20, 2022, Mw 6.4 Ferndale, California, earthquake and complements the following publication: Shelly, D. R., D. E. Goldberg, K. Z. Materna, R. J. Skoumal, J. L. Hardebeck., C. E. Yoon, W. L. Yeck, and P. S. Earle (2024). Subduction intraslab-interface fault interactions in the 2022 Mw 6.4 Ferndale, California, earthquake sequence, Science Advances, https:/
Supporting Data and Models for Characterizing the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence
This data release pertains to the February 2023 Kahramanmaraş, Türkiye earthquake sequence and complements the following publication:
Goldberg, D.E. et al. (2023) Rapid Characterization of the February 2023 Kahramanmaraş, Türkiye, Earthquake Sequence, The Seismic Record. (xx), 1, doi: 10.1785/0320230009.
Child Items "2023-02-06 Mw7.8 Pazarcık Earthquake Finite Fault Data and Model" and "2023-02-
Regional and Teleseismic Observations for Finite-Fault Product
This data release complements the following publication: Goldberg, D. E., P. Koch, D. Melgar, S. Riquelme, and W. L. Yeck (2022). Beyond the Teleseism: Introducing Regional Seismic and Geodetic Data into Routine USGS Finite-Fault Modeling, Seismol. Res. Lett. XX, 1–16, doi: 10.1785/0220220047. Rapid finite-fault models are published by the US Geological Survey (USGS) National Earthquake Informati
High-rate GNSS Observations and Finite Fault Models of Moderate to Large Earthquakes
This database complements the following publication: Goldberg, D. E., D. Melgar, G. P. Hayes, B. W. Crowell, and V. J. Sahakian (2021). A Ground-Motion Model for GNSS Peak Ground Displacement, Bulletin of the Seismological Society of America XX, 1-15, doi: 10.1785/0120210042. High-rate Global Navigations Satellite Systems (GNSS) data is recognized as a valuable complement to traditional inertial
Regional Finite-Fault Models of the 2019 Mw7.1 Ridgecrest, California, Earthquake
This dataset complements the following publication: Goldberg, D.E. & Haynie, K.L (2021) Ready for real-time: Performance of Global Navigation Satellite Systems in 2019 Mw7.1 Ridgecrest, California, rapid response products, Seismological Research Letters, doi: 10.1785/0220210278. The availability of low-latency, high-rate Global Navigation Satellite Systems (GNSS) waveforms makes it possible to com
Rapid Source Characterization of the 2023 Mw 6.8 Al Haouz, Morocco, Earthquake
The U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) estimates source characteristics of significant damaging earthquakes, aiming to place events within their seismotectonic framework. Contextualizing the 8 September 2023, Mw 6.8 Al Haouz, Morocco, earthquake is challenging, because it occurred in an enigmatic region of active surface faulting, and low seismicity yet pro
Authors
William L. Yeck, Alexandra Elise Hatem, Dara Elyse Goldberg, William D. Barnhart, Jessica Ann Thompson Jobe, David R. Shelly, Antonio Villasenor, Harley Benz, Paul S. Earle
Rapid characterization of the February 2023 Kahramanmaraş, Turkey, earthquake sequence
The 6 February 2023 Mw 7.8 Pazarcık and subsequent Mw 7.5 Elbistan earthquakes generated strong ground shaking that resulted in catastrophic human and economic loss across south‐central Türkiye and northwest Syria. The rapid characterization of the earthquakes, including their location, size, fault geometries, and slip kinematics, is critical to estimate the impact of significant seismic events.
Authors
Dara Elyse Goldberg, Tuncay Taymaz, Nadine G. Reitman, Alexandra Elise Hatem, Seda Yolsal-Çevikbilen, William D. Barnhart, Tahir Serkan Irmak, David J. Wald, Taylan Öcalan, William L. Yeck, Berkan Özkan, Jessica Ann Thompson Jobe, David R. Shelly, Eric M. Thompson, Christopher DuRoss, Paul S. Earle, Richard W. Briggs, Harley M. Benz, Ceyhun Erman, Ali Hasan Doğan, Cemali Altuntaş
Dense geophysical observations reveal a triggered, concurrent multi-fault rupture at the Mendocino Triple Junction
A central question of earthquake science is how far ruptures can jump from one fault to another, because cascading ruptures can increase the shaking of a seismic event. Earthquake science relies on earthquake catalogs and therefore how complex ruptures get documented and cataloged has important implications. Recent investments in geophysical instrumentation allow us to resolve increasingly complex
Authors
William L. Yeck, David R. Shelly, Dara Elyse Goldberg, Kathryn Zerbe Materna, Paul S. Earle
Beyond the teleseism: Introducing regional seismic and geodetic data into routine USGS finite‐fault modeling
The U.S. Geological Survey (USGS) National Earthquake Information Center (NEIC) routinely produces finite‐fault models following significant earthquakes. These models are spatiotemporal estimates of coseismic slip critical to constraining downstream response products such as ShakeMap ground motion estimates, Prompt Assessment of Global Earthquake for Response loss estimates, and ground failure ass
Authors
Dara Elyse Goldberg, Pablo Koch, Diego Melgar, Sebastian Riquelme, William L. Yeck
Ready for real time: Performance of Global Navigation Satellite System in 2019 Mw 7.1 Ridgecrest, California, rapid response products
Global Navigation Satellite Systems (GNSSs) have undergone notable advancement in the last few decades, leading to the availability of a dataset with capabilities well beyond its original intended purpose. The proliferation of high‐rate (1 Hz or greater) GNSS receivers in areas of seismological interest now allows for routine consideration of dynamic earthquake ground motions, with centimeter‐leve
Authors
Dara Elyse Goldberg, Kirstie Lafon Haynie
A ground motion model for GNSS peak ground displacement
We present an updated ground‐motion model (GMM) for MwMw 6–9 earthquakes using Global Navigation Satellite Systems (GNSS) observations of the peak ground displacement (PGD). Earthquake GMMs inform a range of Earth science and engineering applications, including source characterization, seismic hazard evaluations, loss estimates, and seismic design standards. A typical GMM is characterized by simpl
Authors
Dara Elyse Goldberg, Diego Melgar, Gavin P. Hayes, Valerie J. Sahakian, Brendan W. Crowell