Karl is a Fish Biologist at the Western Fisheries Research Center.
Science and Products
Influence of urbanization on the health of juvenile salmonids in Pacific Northwest perennial streams
Investigation of otolith microstructure and composition for identification of rearing strategies and associated Baker Lake sockeye salmon (Oncorhynchus nerka) smolt production, Washington, 2016–17
Effectiveness of an integrated hatchery program: Can genetic-based performance differences between hatchery and wild Chinook salmon be avoided?
A test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993)
Effect of size of unfed fry at release on survival and growth of juvenile steelhead in streams and a hatchery (Study sites: Dworshak Hatchery, Silver Creek, and Twenty-Mile Creek; Stock: Dworshak hatchery; Year classes: 1996 and 1999)
Effect of developmental stage of unfed fry on survival and growth of steelhead released in a stream and hatchery ponds (Study sites: Dworshak Hatchery and North Fork Palouse River; Stock: Dworshak hatchery; Year class: 1996)
Effect of incubation temperature on post-embryonic survival and growth of steelhead in a natural stream and a hatchery (Study sites: Dworshak Hatchery and North Fork Palouse River; Stocks: Dworshak hatchery; Year classes: 1994 and 1995)
Genetic differences between hatchery and wild steelhead for survival, growth, dispersal, and male maturation in a natural stream (Study site: Twenty-Mile Creek; Stocks: Dworshak hatchery and Selway River wild; Year classes: 1994 and 1995)
This study was initiated in the early 1990s to provide managers with data comparing genetic fitness for natural rearing, as measured by survival of juveniles in freshwater, between steelhead Oncorhynchus mykiss from Dworshak National Fish Hatchery and wild steelhead from the Clearwater River, Idaho. We artificially spawned hatchery steelhead and wild steelhead from the Selway River, a Clearwater R
Differences in survival and growth in hatchery and stream environments, and in maturation of residuls in a stream, between progeny of hatchery and wild steelhead (Study sites: Brushy Fork Creek and Dworshak Hatchery; Stocks:Dworshak hatchery and Fish Cree
Aquatic ecology of the Elwha River estuary prior to dam removal: Chapter 7 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal
Extended abstracts from the Coastal Habitats in Puget Sound (CHIPS) 2006 Workshop
Science and Products
- Data
Influence of urbanization on the health of juvenile salmonids in Pacific Northwest perennial streams
Physical and chemical changes affect the biota within urban streams at varying scales ranging from individual organisms to populations and communities creating complex interactions that present challenges for characterizing and monitoring the impact on species utilizing these freshwater habitats. Salmonids, specifically cutthroat trout (Oncorhynchus clarkii) and coho salmon (Oncorhynchus kisutch), - Publications
Investigation of otolith microstructure and composition for identification of rearing strategies and associated Baker Lake sockeye salmon (Oncorhynchus nerka) smolt production, Washington, 2016–17
Baker River (Washington, USA) sockeye salmon (Oncorhynchus nerka) are a recovering Puget Sound stock that are aided by trap-and-haul and hatchery programs to mitigate for the presence of a high head dam. The relative contribution of hatchery and natural adults to overall production of smolts and recruits is unknown. The ability to identify three different sockeye production groups (natural productEffectiveness of an integrated hatchery program: Can genetic-based performance differences between hatchery and wild Chinook salmon be avoided?
Performance of wild (W) and hatchery (H) spring Chinook salmon (Oncorhynchus tshawytscha) was evaluated for a sixth generation hatchery program. Management techniques to minimize genetic divergence from the wild stock included regular use of wild broodstock and volitional releases of juveniles. Performance of HH, WW, and HW (hatchery female spawned with wild male) crosses was compared in hatcheryA test for the relative strength of maternal and stock effects in spring Chinook salmon (Oncorhynchus tshawytscha) from two different hatcheries (Study site: Warm Springs Hatchery; Stocks: Warm Springs Hatchery and Carson Hatchery; Year class: 1993)
An experiment was undertaken to determine the relative strength of maternal and stock effects in Chinook salmon (Oncorhynchus tshawytscha) reared in a common environment, as a companion study to our investigation of hatchery and wild Chinook salmon. Pure-strain and reciprocal crosses were made between two hatchery stocks (Carson and Warm Springs National Fish Hatcheries). The offspring were rearedEffect of size of unfed fry at release on survival and growth of juvenile steelhead in streams and a hatchery (Study sites: Dworshak Hatchery, Silver Creek, and Twenty-Mile Creek; Stock: Dworshak hatchery; Year classes: 1996 and 1999)
We tested whether differences in size of unfed fry at release affected survival and growth of juvenile steelhead Oncorhynchus mykiss in hatchery ponds and streams. Differences in fry size were produced by selecting and spawning females that differed in the mean size of their eggs. Experiments were initiated in 1996 and 1999 with hatchery steelhead returning to the Clearwater River, Idaho. Fry sizeEffect of developmental stage of unfed fry on survival and growth of steelhead released in a stream and hatchery ponds (Study sites: Dworshak Hatchery and North Fork Palouse River; Stock: Dworshak hatchery; Year class: 1996)
We tested whether differences in developmental stage of unfed fry at release affected subsequent survival and growth of steelhead Oncorhynchus mykiss in a stream and hatchery ponds. Differences in development were created by artificially spawning hatchery steelhead from the Clearwater River, Idaho, and incubating their progeny at three different temperatures (means=10.9, 11.3, and 11.7°C). Time beEffect of incubation temperature on post-embryonic survival and growth of steelhead in a natural stream and a hatchery (Study sites: Dworshak Hatchery and North Fork Palouse River; Stocks: Dworshak hatchery; Year classes: 1994 and 1995)
We tested whether varying incubation temperatures to match development between embryos from different spawning dates affected survival and growth of unfed steelhead Oncorhynchus mykiss fry released in a stream and in hatchery ponds. Hatchery steelhead returning to the Clearwater River, Idaho were artificially spawned on two dates separated by a four week interval. Progeny from the early date (ExEGenetic differences between hatchery and wild steelhead for survival, growth, dispersal, and male maturation in a natural stream (Study site: Twenty-Mile Creek; Stocks: Dworshak hatchery and Selway River wild; Year classes: 1994 and 1995)
This study was initiated in the early 1990s to provide managers with data comparing genetic fitness for natural rearing, as measured by survival of juveniles in freshwater, between steelhead Oncorhynchus mykiss from Dworshak National Fish Hatchery and wild steelhead from the Clearwater River, Idaho. We artificially spawned hatchery steelhead and wild steelhead from the Selway River, a Clearwater R
Differences in survival and growth in hatchery and stream environments, and in maturation of residuls in a stream, between progeny of hatchery and wild steelhead (Study sites: Brushy Fork Creek and Dworshak Hatchery; Stocks:Dworshak hatchery and Fish Cree
Freshwater survival in hatchery and natural rearing environments was compared between progeny of hatchery (H) and wild (W) steelhead Oncorhynchus mykiss from the Clearwater River drainage in Idaho. Adults from Dworshak National Fish Hatchery and wild adults from Fish Creek fish were artificially spawned, and their progeny were genetically marked at the PEPA allozyme locus and released together asAquatic ecology of the Elwha River estuary prior to dam removal: Chapter 7 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal
The removal of two long-standing dams on the Elwha River in Washington State will initiate a suite of biological and physical changes to the estuary at the river mouth. Estuaries represent a transition between freshwater and saltwater, have unique assemblages of plants and animals, and are a critical habitat for some salmon species as they migrate to the ocean. This chapter summarizes a number ofExtended abstracts from the Coastal Habitats in Puget Sound (CHIPS) 2006 Workshop
Puget Sound is the second largest estuary in the United States. Its unique geology, climate, and nutrient-rich waters produce and sustain biologically productive coastal habitats. These same natural characteristics also contribute to a high quality of life that has led to a significant growth in human population and associated development. This population growth, and the accompanying rural and urb - Multimedia