Morgan T Page
Morgan Page is a geophysicist in the Earthquake Science Center.
Science and Products
Filter Total Items: 43
a-positive: A robust estimator of the earthquake rate in incomplete or saturated catalogs a-positive: A robust estimator of the earthquake rate in incomplete or saturated catalogs
Detection thresholds in earthquake catalogs frequently change in time due to station coverage improvements and network saturation effects during active periods such as mainshock-aftershock cascades. This presents a challenge to seismicity-rate estimation; there is a tradeoff between using as low a minimum magnitude as possible to maximize data while not undercounting the rate due to...
Authors
Nicholas van der Elst, Morgan T. Page
Modern products for a vintage event: An update on the 1933 Long Beach, California, earthquake Modern products for a vintage event: An update on the 1933 Long Beach, California, earthquake
When a notable earthquake occurs in the United States, a range of familiar real‐ and near‐real‐time products are produced by the U.S. Geological Survey (USGS) Advanced National Seismic System (ANSS), and made available via the ANSS Comprehensive Earthquake Catalog. For historical and early instrumental earthquakes, similar results and products are developed depending on data availability...
Authors
Susan E. Hough, J. Luke Blair, Sonia Ellison, Robert Graves, Scott Haefner, Eric M. Thompson, Nicholas van der Elst, Morgan T. Page, David J. Wald
Fault roughness at seismogenic depths and links to earthquake behavior Fault roughness at seismogenic depths and links to earthquake behavior
Fault geometry affects the initiation, propagation, and cessation of earthquake rupture, as well as, potentially, the statistical behavior of earthquake sequences. We analyze 18,250 (−0.27
Authors
Elizabeth S. Cochran, Morgan T. Page, Nicholas van der Elst, Zachary E. Ross, Daniel T. Trugman
Aftershocks preferentially occur in previously active areas Aftershocks preferentially occur in previously active areas
The clearest statistical signal in aftershock locations is that most aftershocks occur close to their mainshocks. More precisely, aftershocks are triggered at distances following a power‐law decay in distance (Felzer and Brodsky, 2006). This distance decay kernel is used in epidemic‐type aftershock sequence (ETAS) modeling and is typically assumed to be isotropic, even though individual...
Authors
Morgan T. Page, Nicholas van der Elst
Improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS) Improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS)
We describe recent improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS), which continues to represent our most advanced and complete earthquake forecast in terms of relaxing segmentation assumptions and representing multifault ruptures, elastic‐rebound effects, and spatiotemporal clustering (the latter to represent aftershocks and otherwise...
Authors
Edward H. Field, Kevin R. Milner, Morgan T. Page, William H. Savran, Nicholas van der Elst
Apparent earthquake rupture predictability Apparent earthquake rupture predictability
To what extent can the future evolution of an ongoing earthquake rupture be predicted? This question of fundamental scientific and practical importance has recently been addressed by studies of teleseismic source time functions (STFs) but reaching contrasting conclusions. One study concludes that the initial portion of STFs is the same regardless of magnitude. Another study concludes...
Authors
M.-A. Meier, P. Ampuero, Elizabeth S. Cochran, Morgan T. Page
Science and Products
Filter Total Items: 43
a-positive: A robust estimator of the earthquake rate in incomplete or saturated catalogs a-positive: A robust estimator of the earthquake rate in incomplete or saturated catalogs
Detection thresholds in earthquake catalogs frequently change in time due to station coverage improvements and network saturation effects during active periods such as mainshock-aftershock cascades. This presents a challenge to seismicity-rate estimation; there is a tradeoff between using as low a minimum magnitude as possible to maximize data while not undercounting the rate due to...
Authors
Nicholas van der Elst, Morgan T. Page
Modern products for a vintage event: An update on the 1933 Long Beach, California, earthquake Modern products for a vintage event: An update on the 1933 Long Beach, California, earthquake
When a notable earthquake occurs in the United States, a range of familiar real‐ and near‐real‐time products are produced by the U.S. Geological Survey (USGS) Advanced National Seismic System (ANSS), and made available via the ANSS Comprehensive Earthquake Catalog. For historical and early instrumental earthquakes, similar results and products are developed depending on data availability...
Authors
Susan E. Hough, J. Luke Blair, Sonia Ellison, Robert Graves, Scott Haefner, Eric M. Thompson, Nicholas van der Elst, Morgan T. Page, David J. Wald
Fault roughness at seismogenic depths and links to earthquake behavior Fault roughness at seismogenic depths and links to earthquake behavior
Fault geometry affects the initiation, propagation, and cessation of earthquake rupture, as well as, potentially, the statistical behavior of earthquake sequences. We analyze 18,250 (−0.27
Authors
Elizabeth S. Cochran, Morgan T. Page, Nicholas van der Elst, Zachary E. Ross, Daniel T. Trugman
Aftershocks preferentially occur in previously active areas Aftershocks preferentially occur in previously active areas
The clearest statistical signal in aftershock locations is that most aftershocks occur close to their mainshocks. More precisely, aftershocks are triggered at distances following a power‐law decay in distance (Felzer and Brodsky, 2006). This distance decay kernel is used in epidemic‐type aftershock sequence (ETAS) modeling and is typically assumed to be isotropic, even though individual...
Authors
Morgan T. Page, Nicholas van der Elst
Improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS) Improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS)
We describe recent improvements to the Third Uniform California Earthquake Rupture Forecast ETAS Model (UCERF3‐ETAS), which continues to represent our most advanced and complete earthquake forecast in terms of relaxing segmentation assumptions and representing multifault ruptures, elastic‐rebound effects, and spatiotemporal clustering (the latter to represent aftershocks and otherwise...
Authors
Edward H. Field, Kevin R. Milner, Morgan T. Page, William H. Savran, Nicholas van der Elst
Apparent earthquake rupture predictability Apparent earthquake rupture predictability
To what extent can the future evolution of an ongoing earthquake rupture be predicted? This question of fundamental scientific and practical importance has recently been addressed by studies of teleseismic source time functions (STFs) but reaching contrasting conclusions. One study concludes that the initial portion of STFs is the same regardless of magnitude. Another study concludes...
Authors
M.-A. Meier, P. Ampuero, Elizabeth S. Cochran, Morgan T. Page