Morgan T Page
Morgan Page is a geophysicist in the Earthquake Science Center.
Science and Products
Filter Total Items: 43
A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3) A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)
Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of...
Authors
Edward H. Field, Thomas H. Jordan, Morgan T. Page, Kevin R. Milner, Bruce E. Shaw, Timothy E. Dawson, Glenn Biasi, Thomas E. Parsons, Jeanne L. Hardebeck, Andrew J. Michael, Ray J. Weldon, Peter M. Powers, Kaj M. Johnson, Yuehua Zeng, Peter Bird, Karen Felzer, Nicholas van der Elst, Christopher Madden, Ramon Arrowsmith, Maximillan J. Werner, Wayne R. Thatcher
A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast
We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type...
Authors
Edward H. Field, Kevin R. Milner, Jeanne L. Hardebeck, Morgan T. Page, Nicholas van der Elst, Thomas H. Jordan, Andrew J. Michael, Bruce E. Shaw, Maximillan J. Werner
Three ingredients for Improved global aftershock forecasts: Tectonic region, time-dependent catalog incompleteness, and inter-sequence variability Three ingredients for Improved global aftershock forecasts: Tectonic region, time-dependent catalog incompleteness, and inter-sequence variability
Following a large earthquake, seismic hazard can be orders of magnitude higher than the long‐term average as a result of aftershock triggering. Because of this heightened hazard, emergency managers and the public demand rapid, authoritative, and reliable aftershock forecasts. In the past, U.S. Geological Survey (USGS) aftershock forecasts following large global earthquakes have been...
Authors
Morgan T. Page, Nicholas van der Elst, Jeanne L. Hardebeck, Karen Felzer, Andrew J. Michael
The Earthquake‐Source Inversion Validation (SIV) Project The Earthquake‐Source Inversion Validation (SIV) Project
Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in...
Authors
P. Martin Mai, Danijel Schorlemmer, Morgan T. Page, Jean-Paul Ampuero, Kimiyuki Asano, Mathieu Causse, Susana Custodio, Wenyuan Fan, Gaetano Festa, Martin Galis, Frantisek Gallovic, Walter Imperatori, Martin Kaser, Dmytro Malytskyy, Ryo Okuwaki, Frederick Pollitz, Luca Passone, Hoby N. T. Razafindrakoto, Haruko Sekiguchi, Seok Goo Song, Surendra N. Somala, Kiran K. S. Thingbaijam, Cedric Twardzik, Martin van Driel, Jagdish C. Vyas, Rongjiang Wang, Yuji Yagi, Olaf Zielke
Induced earthquake magnitudes are as large as (statistically) expected Induced earthquake magnitudes are as large as (statistically) expected
A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults...
Authors
Nicholas van der Elst, Morgan T. Page, Deborah A. Weiser, Thomas Goebel, S. Mehran Hosseini
Potentially induced earthquakes during the early twentieth century in the Los Angeles Basin Potentially induced earthquakes during the early twentieth century in the Los Angeles Basin
Recent studies have presented evidence that early to mid‐twentieth‐century earthquakes in Oklahoma and Texas were likely induced by fossil fuel production and/or injection of wastewater (Hough and Page, 2015; Frohlich et al., 2016). Considering seismicity from 1935 onward, Hauksson et al. (2015) concluded that there is no evidence for significant induced activity in the greater Los...
Authors
Susan E. Hough, Morgan T. Page
Science and Products
Filter Total Items: 43
A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3) A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)
Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of...
Authors
Edward H. Field, Thomas H. Jordan, Morgan T. Page, Kevin R. Milner, Bruce E. Shaw, Timothy E. Dawson, Glenn Biasi, Thomas E. Parsons, Jeanne L. Hardebeck, Andrew J. Michael, Ray J. Weldon, Peter M. Powers, Kaj M. Johnson, Yuehua Zeng, Peter Bird, Karen Felzer, Nicholas van der Elst, Christopher Madden, Ramon Arrowsmith, Maximillan J. Werner, Wayne R. Thatcher
A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast
We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type...
Authors
Edward H. Field, Kevin R. Milner, Jeanne L. Hardebeck, Morgan T. Page, Nicholas van der Elst, Thomas H. Jordan, Andrew J. Michael, Bruce E. Shaw, Maximillan J. Werner
Three ingredients for Improved global aftershock forecasts: Tectonic region, time-dependent catalog incompleteness, and inter-sequence variability Three ingredients for Improved global aftershock forecasts: Tectonic region, time-dependent catalog incompleteness, and inter-sequence variability
Following a large earthquake, seismic hazard can be orders of magnitude higher than the long‐term average as a result of aftershock triggering. Because of this heightened hazard, emergency managers and the public demand rapid, authoritative, and reliable aftershock forecasts. In the past, U.S. Geological Survey (USGS) aftershock forecasts following large global earthquakes have been...
Authors
Morgan T. Page, Nicholas van der Elst, Jeanne L. Hardebeck, Karen Felzer, Andrew J. Michael
The Earthquake‐Source Inversion Validation (SIV) Project The Earthquake‐Source Inversion Validation (SIV) Project
Finite‐fault earthquake source inversions infer the (time‐dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, multiple source models for the same earthquake, obtained by different research teams, often exhibit remarkable dissimilarities. To address the uncertainties in...
Authors
P. Martin Mai, Danijel Schorlemmer, Morgan T. Page, Jean-Paul Ampuero, Kimiyuki Asano, Mathieu Causse, Susana Custodio, Wenyuan Fan, Gaetano Festa, Martin Galis, Frantisek Gallovic, Walter Imperatori, Martin Kaser, Dmytro Malytskyy, Ryo Okuwaki, Frederick Pollitz, Luca Passone, Hoby N. T. Razafindrakoto, Haruko Sekiguchi, Seok Goo Song, Surendra N. Somala, Kiran K. S. Thingbaijam, Cedric Twardzik, Martin van Driel, Jagdish C. Vyas, Rongjiang Wang, Yuji Yagi, Olaf Zielke
Induced earthquake magnitudes are as large as (statistically) expected Induced earthquake magnitudes are as large as (statistically) expected
A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults...
Authors
Nicholas van der Elst, Morgan T. Page, Deborah A. Weiser, Thomas Goebel, S. Mehran Hosseini
Potentially induced earthquakes during the early twentieth century in the Los Angeles Basin Potentially induced earthquakes during the early twentieth century in the Los Angeles Basin
Recent studies have presented evidence that early to mid‐twentieth‐century earthquakes in Oklahoma and Texas were likely induced by fossil fuel production and/or injection of wastewater (Hough and Page, 2015; Frohlich et al., 2016). Considering seismicity from 1935 onward, Hauksson et al. (2015) concluded that there is no evidence for significant induced activity in the greater Los...
Authors
Susan E. Hough, Morgan T. Page