Steven M. Cahan
Steven Cahan is a Cartographer with the USGS Geology, Energy & Minerals (GEM) Science Center in Reston, VA.
Steven received a bachelors degree in geography from Virginia Tech in 2010. Since joining the USGS, Steven has provided support in GIS to several projects including the CO2 sequestration project, the Gulf Coast assessment, and the National Geologic Map Database. His work includes geospatial analysis, map production, and keeping image servers up to date.
Professional Experience
May 2010 - present, Cartographer, USGS Geology, Energy & Minerals Science Center, Reston, VA
Education and Certifications
B.A. Geography - Geospatial and Environmental Analysis, Virginia Tech
Science and Products
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources - data release National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources - data release
In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied in amenable oil reservoirs underlying the onshore and State waters area of the conterminous United States. The assessment also includes estimates of the...
Geologic formations and mine locations for potential CO2 mineralization Geologic formations and mine locations for potential CO2 mineralization
This geodatabase contains geologic unit boundaries and asbestos site locations shown in "Carbon dioxide mineralization feasibility in the United States" (Blondes and others, 2019). Data was compiled from source material at a scale range of 1:100,000 to 1:5,000,000 and is not intended for any greater detail.
USGS Gulf Coast Source Rock Database (ver. 2.0, October 2023) USGS Gulf Coast Source Rock Database (ver. 2.0, October 2023)
The USGS Gulf Coast Source Rock Database (GCSRD) is an online repository for all publicly available source rock data (outcrop and subsurface) from the states of Florida, Georgia, Alabama, Mississippi, Louisiana, Arkansas, and Texas. "Source rock data" are defined in this context as data that include any of the following measured or calculated parameters: -total organic carbon (TOC),...
USGS Gulf Coast Petroleum Systems, and National and Global Oil and Gas Assessment Projects - U.S. Gulf Coast Downdip Paleogene Formations 2017 Assessment Unit Boundaries and Input-Data Forms USGS Gulf Coast Petroleum Systems, and National and Global Oil and Gas Assessment Projects - U.S. Gulf Coast Downdip Paleogene Formations 2017 Assessment Unit Boundaries and Input-Data Forms
The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and...
Filter Total Items: 27
Database of the "North America Tapestry of Time and Terrain" map Database of the "North America Tapestry of Time and Terrain" map
In 2000, the U.S. Geological Survey published a distinctive map, entitled “A Tapestry of Time and Terrain,” which showed a generalized depiction of the geology in the conterminous United States, draped over shaded-relief topography. In 2003, that map concept was extended geographically, and the resulting new map was published at 1:8,000,000 scale as “The North America Tapestry of Time...
Authors
Steven M. Cahan, Christopher P. Garrity, David R. Soller, Jose F. Vigil
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary
Introduction In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources that might be produced by using current carbon dioxide enhanced oil recovery (CO2-EOR) technologies in amenable conventional oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also...
Authors
Peter D. Warwick, Emil D. Attanasi, Madalyn S. Blondes, Sean T. Brennan, Marc L. Buursink, Steven M. Cahan, Colin A. Doolan, Philip A. Freeman, C. Ozgen Karacan, Celeste D. Lohr, Matthew D. Merrill, Ricardo A. Olea, Jenna L. Shelton, Ernie R. Slucher, Brian A. Varela
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results
In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied to amenable oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes estimates of the mass of...
Authors
Peter D. Warwick, Emil D. Attanasi, Madalyn S. Blondes, Sean T. Brennan, Marc L. Buursink, Steven M. Cahan, Colin A. Doolan, Philip A. Freeman, C. Ozgen Karacan, Celeste D. Lohr, Matthew D. Merrill, Ricardo A. Olea, Jenna L. Shelton, Ernie R. Slucher, Brian A. Varela
Estimating market conditions for potential entry of new sources of anthropogenic CO2 for EOR in the Permian Basin Estimating market conditions for potential entry of new sources of anthropogenic CO2 for EOR in the Permian Basin
This study attempts to determine feasible carbon dioxide (CO2) price thresholds for entry of new sources of anthropogenic (man-made) CO2 for utilization in enhanced oil recovery (EOR) in the Permian Basin. Much of the discussion about carbon capture, utilization, and storage (CCUS) has focused on the high costs of carbon capture as the major barrier to entry of new anthropogenic sources...
Authors
Steven T. Anderson, Steven M. Cahan
Geologic framework for the national assessment of carbon dioxide storage resources—Atlantic Coastal Plain and Eastern Mesozoic Rift Basins Geologic framework for the national assessment of carbon dioxide storage resources—Atlantic Coastal Plain and Eastern Mesozoic Rift Basins
This chapter presents information pertinent to the geologic carbon dioxide (CO2) sequestration potential within saline aquifers located in the Atlantic Coastal Plain and Eastern Mesozoic Rift Basins of the Eastern United States. The Atlantic Coastal Plain is underlain by a Jurassic to Quaternary succession of sedimentary strata that onlap westward onto strata of the Appalachian Piedmont
Authors
William H. Craddock, Matthew D. Merrill, Tina L. Roberts-Ashby, Sean T. Brennan, Marc L. Buursink, Ronald M. Drake, Peter D. Warwick, Steven M. Cahan, Christina A. DeVera, Philip A. Freeman, Mayur A. Gosai, Celeste D. Lohr
Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters
In 2010, the U.S. Geological Survey (USGS) assessed Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups and their equivalent units for technically recoverable, undiscovered hydrocarbon resources underlying onshore lands and State Waters of the Gulf Coast region of the United States. This assessment was based on a geologic model...
Authors
Sharon M. Swanson, Catherine B. Enomoto, Kristin O. Dennen, Brett J. Valentine, Steven M. Cahan
Science and Products
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources - data release National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources - data release
In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied in amenable oil reservoirs underlying the onshore and State waters area of the conterminous United States. The assessment also includes estimates of the...
Geologic formations and mine locations for potential CO2 mineralization Geologic formations and mine locations for potential CO2 mineralization
This geodatabase contains geologic unit boundaries and asbestos site locations shown in "Carbon dioxide mineralization feasibility in the United States" (Blondes and others, 2019). Data was compiled from source material at a scale range of 1:100,000 to 1:5,000,000 and is not intended for any greater detail.
USGS Gulf Coast Source Rock Database (ver. 2.0, October 2023) USGS Gulf Coast Source Rock Database (ver. 2.0, October 2023)
The USGS Gulf Coast Source Rock Database (GCSRD) is an online repository for all publicly available source rock data (outcrop and subsurface) from the states of Florida, Georgia, Alabama, Mississippi, Louisiana, Arkansas, and Texas. "Source rock data" are defined in this context as data that include any of the following measured or calculated parameters: -total organic carbon (TOC),...
USGS Gulf Coast Petroleum Systems, and National and Global Oil and Gas Assessment Projects - U.S. Gulf Coast Downdip Paleogene Formations 2017 Assessment Unit Boundaries and Input-Data Forms USGS Gulf Coast Petroleum Systems, and National and Global Oil and Gas Assessment Projects - U.S. Gulf Coast Downdip Paleogene Formations 2017 Assessment Unit Boundaries and Input-Data Forms
The Assessment Unit is the fundamental unit used in the National Assessment Project for the assessment of undiscovered oil and gas resources. The Assessment Unit is defined within the context of the higher-level Total Petroleum System. The Assessment Unit is shown herein as a geographic boundary interpreted, defined, and mapped by the geologist responsible for the province and...
Filter Total Items: 27
Database of the "North America Tapestry of Time and Terrain" map Database of the "North America Tapestry of Time and Terrain" map
In 2000, the U.S. Geological Survey published a distinctive map, entitled “A Tapestry of Time and Terrain,” which showed a generalized depiction of the geology in the conterminous United States, draped over shaded-relief topography. In 2003, that map concept was extended geographically, and the resulting new map was published at 1:8,000,000 scale as “The North America Tapestry of Time...
Authors
Steven M. Cahan, Christopher P. Garrity, David R. Soller, Jose F. Vigil
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Summary
Introduction In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources that might be produced by using current carbon dioxide enhanced oil recovery (CO2-EOR) technologies in amenable conventional oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also...
Authors
Peter D. Warwick, Emil D. Attanasi, Madalyn S. Blondes, Sean T. Brennan, Marc L. Buursink, Steven M. Cahan, Colin A. Doolan, Philip A. Freeman, C. Ozgen Karacan, Celeste D. Lohr, Matthew D. Merrill, Ricardo A. Olea, Jenna L. Shelton, Ernie R. Slucher, Brian A. Varela
National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results National assessment of carbon dioxide enhanced oil recovery and associated carbon dioxide retention resources — Results
In 2020, the U.S. Geological Survey (USGS) completed a probabilistic assessment of the volume of technically recoverable oil resources available if current carbon dioxide enhanced oil recovery (CO2-EOR) technologies were applied to amenable oil reservoirs underlying the onshore and State waters areas of the conterminous United States. The assessment also includes estimates of the mass of...
Authors
Peter D. Warwick, Emil D. Attanasi, Madalyn S. Blondes, Sean T. Brennan, Marc L. Buursink, Steven M. Cahan, Colin A. Doolan, Philip A. Freeman, C. Ozgen Karacan, Celeste D. Lohr, Matthew D. Merrill, Ricardo A. Olea, Jenna L. Shelton, Ernie R. Slucher, Brian A. Varela
Estimating market conditions for potential entry of new sources of anthropogenic CO2 for EOR in the Permian Basin Estimating market conditions for potential entry of new sources of anthropogenic CO2 for EOR in the Permian Basin
This study attempts to determine feasible carbon dioxide (CO2) price thresholds for entry of new sources of anthropogenic (man-made) CO2 for utilization in enhanced oil recovery (EOR) in the Permian Basin. Much of the discussion about carbon capture, utilization, and storage (CCUS) has focused on the high costs of carbon capture as the major barrier to entry of new anthropogenic sources...
Authors
Steven T. Anderson, Steven M. Cahan
Geologic framework for the national assessment of carbon dioxide storage resources—Atlantic Coastal Plain and Eastern Mesozoic Rift Basins Geologic framework for the national assessment of carbon dioxide storage resources—Atlantic Coastal Plain and Eastern Mesozoic Rift Basins
This chapter presents information pertinent to the geologic carbon dioxide (CO2) sequestration potential within saline aquifers located in the Atlantic Coastal Plain and Eastern Mesozoic Rift Basins of the Eastern United States. The Atlantic Coastal Plain is underlain by a Jurassic to Quaternary succession of sedimentary strata that onlap westward onto strata of the Appalachian Piedmont
Authors
William H. Craddock, Matthew D. Merrill, Tina L. Roberts-Ashby, Sean T. Brennan, Marc L. Buursink, Ronald M. Drake, Peter D. Warwick, Steven M. Cahan, Christina A. DeVera, Philip A. Freeman, Mayur A. Gosai, Celeste D. Lohr
Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters
In 2010, the U.S. Geological Survey (USGS) assessed Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups and their equivalent units for technically recoverable, undiscovered hydrocarbon resources underlying onshore lands and State Waters of the Gulf Coast region of the United States. This assessment was based on a geologic model...
Authors
Sharon M. Swanson, Catherine B. Enomoto, Kristin O. Dennen, Brett J. Valentine, Steven M. Cahan