Yuehua Zeng
Yuehua Zeng is a research scientist in the Earthquake Hazards Program.
Science and Products
Filter Total Items: 31
Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity
Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6...
Authors
Yuehua Zeng, Mark D. Petersen, Zheng-Kang Shen
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors...
Authors
Yuehua Zeng
A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs
We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone...
Authors
Yuehua Zeng, Zheng-Kang Shen
A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3) A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)
Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of...
Authors
Edward H. Field, Thomas H. Jordan, Morgan T. Page, Kevin R. Milner, Bruce E. Shaw, Timothy E. Dawson, Glenn Biasi, Thomas E. Parsons, Jeanne L. Hardebeck, Andrew J. Michael, Ray J. Weldon, Peter M. Powers, Kaj M. Johnson, Yuehua Zeng, Peter Bird, Karen Felzer, Nicholas van der Elst, Christopher Madden, Ramon Arrowsmith, Maximillan J. Werner, Wayne R. Thatcher
A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California
We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by...
Authors
Yuehua Zeng, Zheng-Kang Shen
The 2014 United States National Seismic Hazard Model The 2014 United States National Seismic Hazard Model
New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include...
Authors
Mark D. Petersen, Morgan P. Moschetti, Peter M. Powers, Charles Mueller, Kathleen Haller, Arthur D. Frankel, Yuehua Zeng, Sanaz Rezaeian, Stephen Harmsen, Oliver S. Boyd, Edward H. Field, Rui Chen, Kenneth S. Rukstales, Nico Luco, Russell Wheeler, Robert Williams, Anna H. Olsen
Science and Products
Filter Total Items: 31
Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity Earthquake potential in California-Nevada implied by correlation of strain rate and seismicity
Rock mechanics studies and dynamic earthquake simulations show that patterns of seismicity evolve with time through (1) accumulation phase, (2) localization phase, and (3) rupture phase. We observe a similar pattern of changes in seismicity during the past century across California and Nevada. To quantify these changes, we correlate GPS strain rates with seismicity. Earthquakes of M > 6...
Authors
Yuehua Zeng, Mark D. Petersen, Zheng-Kang Shen
Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory Modeling of high‐frequency seismic‐wave scattering and propagation using radiative transfer theory
This is a study of the nonisotropic scattering process based on radiative transfer theory and its application to the observation of the M 4.3 aftershock recording of the 2008 Wells earthquake sequence in Nevada. Given a wide range of recording distances from 29 to 320 km, the data provide a unique opportunity to discriminate scattering models based on their distance‐dependent behaviors...
Authors
Yuehua Zeng
A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs A fault‐based model for crustal deformation in the western United States based on a combined inversion of GPS and geologic inputs
We develop a crustal deformation model to determine fault‐slip rates for the western United States (WUS) using the Zeng and Shen (2014) method that is based on a combined inversion of Global Positioning System (GPS) velocities and geological slip‐rate constraints. The model consists of six blocks with boundaries aligned along major faults in California and the Cascadia subduction zone...
Authors
Yuehua Zeng, Zheng-Kang Shen
A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3) A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)
Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of...
Authors
Edward H. Field, Thomas H. Jordan, Morgan T. Page, Kevin R. Milner, Bruce E. Shaw, Timothy E. Dawson, Glenn Biasi, Thomas E. Parsons, Jeanne L. Hardebeck, Andrew J. Michael, Ray J. Weldon, Peter M. Powers, Kaj M. Johnson, Yuehua Zeng, Peter Bird, Karen Felzer, Nicholas van der Elst, Christopher Madden, Ramon Arrowsmith, Maximillan J. Werner, Wayne R. Thatcher
A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California A fault-based model for crustal deformation, fault slip-rates and off-fault strain rate in California
We invert Global Positioning System (GPS) velocity data to estimate fault slip rates in California using a fault‐based crustal deformation model with geologic constraints. The model assumes buried elastic dislocations across the region using Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault geometries. New GPS velocity and geologic slip‐rate data were compiled by...
Authors
Yuehua Zeng, Zheng-Kang Shen
The 2014 United States National Seismic Hazard Model The 2014 United States National Seismic Hazard Model
New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include...
Authors
Mark D. Petersen, Morgan P. Moschetti, Peter M. Powers, Charles Mueller, Kathleen Haller, Arthur D. Frankel, Yuehua Zeng, Sanaz Rezaeian, Stephen Harmsen, Oliver S. Boyd, Edward H. Field, Rui Chen, Kenneth S. Rukstales, Nico Luco, Russell Wheeler, Robert Williams, Anna H. Olsen