The USGS Mississippi Alluvial Plain (MAP) Regional Water Availability Study began airborne geophysical mapping to obtain high-resolution information about the hydrogeologic structure and properties of the aquifer. This geonarrative showcases the geophysical data collected in this effort and provides a three-dimensional view into the Mississippi Alluvial Plain subsurface.
Related Content
Mississippi Alluvial Plain (MAP): Water Availability Study
The Mississippi Alluvial Plain is one of the most productive agricultural regions in the Nation and depends on groundwater for irrigation. The MAP area constitutes the third largest area of irrigated cropland in the United States. The area is approximately 29,000 square miles (19 million acres) and includes parts of the States of Missouri, Tennessee, Arkansas, Mississippi, and Louisiana.The U.S...
Mississippi Alluvial Plain (MAP): Water Use and Availability Program
The Mississippi Alluvial Plain is one of the most productive agricultural regions in the Nation and depends on groundwater for irrigation. The MAP area constitutes the third largest area of irrigated cropland in the United States. The area is approximately 29,000 square miles (19 million acres) and includes parts of the States of Missouri, Tennessee, Arkansas, Mississippi, and Louisiana.The U.S...
Data sources for the geonarrative.
Combined results and derivative products of hydrogeologic structure and properties from airborne electromagnetic surveys in the Mississippi Alluvial Plain
Electrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021 and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. Grids were discretized in the horizontal dimension to align with the 1 kilometer (km) x 1 km
Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths u
Airborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic struc
Airborne electromagnetic, magnetic, and radiometric survey, Shellmound, Mississippi, March 2018
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure
Related Content
- Science
Mississippi Alluvial Plain (MAP): Water Availability Study
The Mississippi Alluvial Plain is one of the most productive agricultural regions in the Nation and depends on groundwater for irrigation. The MAP area constitutes the third largest area of irrigated cropland in the United States. The area is approximately 29,000 square miles (19 million acres) and includes parts of the States of Missouri, Tennessee, Arkansas, Mississippi, and Louisiana.The U.S...Mississippi Alluvial Plain (MAP): Water Use and Availability Program
The Mississippi Alluvial Plain is one of the most productive agricultural regions in the Nation and depends on groundwater for irrigation. The MAP area constitutes the third largest area of irrigated cropland in the United States. The area is approximately 29,000 square miles (19 million acres) and includes parts of the States of Missouri, Tennessee, Arkansas, Mississippi, and Louisiana.The U.S... - Data
Data sources for the geonarrative.
Combined results and derivative products of hydrogeologic structure and properties from airborne electromagnetic surveys in the Mississippi Alluvial Plain
Electrical resistivity results from two regional airborne electromagnetic (AEM) surveys (Minsley et al. 2021 and Burton et al. 2021) over the Mississippi Alluvial Plain (MAP) were combined by the U.S. Geological Survey to produce three-dimensional (3D) gridded models and derivative hydrogeologic products. Grids were discretized in the horizontal dimension to align with the 1 kilometer (km) x 1 kmAirborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2019 - March 2020
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2019 to March 2020 along 24,030 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different airborne sensors: the CGG Canada Services, Ltd. TEMPEST time-domain AEM instrument that is used to map subsurface geologic structure at depths uAirborne electromagnetic, magnetic, and radiometric survey of the Mississippi Alluvial Plain, November 2018 - February 2019
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired November 2018 to February 2019 along 16,816 line-kilometers (line-km) over the Mississippi Alluvial Plain (MAP). Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. Resolve frequency-domain AEM instrument that is used to map subsurface geologic strucAirborne electromagnetic, magnetic, and radiometric survey, Shellmound, Mississippi, March 2018
Airborne electromagnetic (AEM), magnetic, and radiometric data were acquired in late February to early March 2018 along 2,364 line-kilometers in the Shellmound, Mississippi study area. Data were acquired by CGG Canada Services, Ltd. with three different helicopter-borne sensors: the CGG Canada Services, Ltd. RESOLVE frequency-domain AEM instrument that is used to map subsurface geologic structure