Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2057

Education initiatives to support earthquake early warning: A retrospective and a roadmap Education initiatives to support earthquake early warning: A retrospective and a roadmap

As of May 2021, public alerting is now operational for the ShakeAlert earthquake early warning system for the West Coast of the United States in California, Oregon, and Washington. Successful early warning systems require the scientific and technical implementation to be coupled with social and humanitarian considerations, including education and outreach campaigns. Community engagement...
Authors
Danielle F. Sumy, Mariah Ramona Jenkins, Jenny Crayne, Shelley E Olds, Megan L. Anderson, Jenda Johnson, Bonnie Magura, Cynthia L Pridmore, Robert Michael deGroot

Great expectations for earthquake early warnings on the United States West Coast Great expectations for earthquake early warnings on the United States West Coast

In October 2019, California became the first state in the United States to fully activate a public earthquake early warning system—ShakeAlert®—managed by the U.S. Geological Survey. The system was subsequently rolled out in March 2021 in Oregon and May 2021 in Washington. Earthquake early warning (EEW) systems can provide seconds of notice to people and technological systems that shaking...
Authors
Ann Bostrom, Sara K. McBride, J.S. Becker, J.D. Goltz, Robert Michael deGroot, Lori Peek, Brian Terbush, Maximilian Dixon

A study on the effect of site response on California seismic hazard map assessment A study on the effect of site response on California seismic hazard map assessment

Prior studies have repeatedly shown that probabilistic seismic hazard maps from several different countries predict higher shaking than that observed. Previous map assessments have not, however, considered the influence of site response on hazard. Seismologists have long acknowledged the influence of near-surface geology, in particular low-impedance sediment layers, on earthquake ground...
Authors
Molly M. Gallahue, Leah Marschall Salditch, Madeleine C. Lucas, James S. Neely, Seth Stein, Norman A. Abrahamson, Tessa Williams, Susan E. Hough

Testing the ShakeAlert earthquake early warning system using synthesized earthquake sequences Testing the ShakeAlert earthquake early warning system using synthesized earthquake sequences

We test the behavior of the United States (US) West Coast ShakeAlert earthquake early warning (EEW) system during temporally close earthquake pairs to understand current performance and limitations. We consider performance metrics based on source parameter and ground‐motion forecast accuracy, as well as on alerting timeliness. We generate ground‐motion times series for synthesized...
Authors
Maren Bose, Jennifer Andrews, Colin T O’Rourke, Deborah L. Kilb, Angela Lux, Julian Bunn, Jeffrey J. McGuire

Spatially continuous models of aleatory variability in seismic site response for southern California Spatially continuous models of aleatory variability in seismic site response for southern California

We develop an empirical, spatially continuous model for the single-station within-event (ϕSS) component of earthquake ground motion variability in the Los Angeles area. ϕSS represents event-to-event variability in site response or remaining variability due to path effects not captured by ground motion models. Site-specific values of ϕSS at permanent seismic network stations were...
Authors
Grace Alexandra Parker, Annemarie S. Baltay Sundstrom, Eric M. Thompson

Performance of NGA-East GMMs and site amplification models relative to CENA ground motions Performance of NGA-East GMMs and site amplification models relative to CENA ground motions

We investigate bias in ground motions predicted for Central and Eastern North America (CENA) using ground motion models (GMMs) combined with site amplification models developed in the NGA-East project. Bias is anticipated because of de-coupled procedures used in the development of the GMMs and site amplification models. The NGA-East GMMs were mainly calibrated by adjusting CENA data to a...
Authors
Maria E. Ramos-Sepulveda, Grace Alexandra Parker, Meibai Li, Okan Ilhan, Youssef M. A. Hashash, Ellen Rathje, Jonathan P. Stewart

Estimates of kappa in the San Francisco Bay area Estimates of kappa in the San Francisco Bay area

Site characterization is a critical component of seismic hazards studies, especially in the development and use of ground motion models (GMMs). One such parameter, kappa (Κ0), represents local site attenuation and effectively describes regional variations in ground motion [1]. However, estimates of Κ0 are limited. We estimate the site parameter Κ0 for 296 broadband and accelerometer...
Authors
Tara A. Nye, Valerie J. Sahakian, E.L. King, Annemarie S. Baltay Sundstrom, Alexis Klimasewski

Earthquake early warning: Toward modeling optimal protective actions Earthquake early warning: Toward modeling optimal protective actions

Over the past few years early earthquake warning systems have been incorporated into earthquake preparation efforts in many locations around the globe. These systems provide an excellent opportunity for advanced warning of ground shaking and other hazards associated with earthquakes. This study aims to optimize this advanced warning for individuals inside a building when the alert is...
Authors
M. Wood, X. Zhang, X. Zhao, Sara K. McBride, Nico Luco, D. Baldwin, T. Covas

2018 M7.1 Anchorage and 2021 M7.2 Nippes, Haiti earthquake case studies for Virtual Earthquake Reconnaissance Team (VERT) activation protocols, policies, and procedures to gather earthquake response footage 2018 M7.1 Anchorage and 2021 M7.2 Nippes, Haiti earthquake case studies for Virtual Earthquake Reconnaissance Team (VERT) activation protocols, policies, and procedures to gather earthquake response footage

The collection of online videos and imagery to use in disaster reconnaissance is increasing in frequency, due to accessibility of platforms and the ubiquitous nature of smartphones and recording devices. In this short article, we explore the processes, goals, and utility of Virtual Emergency Reconnaissance Teams (VERTs) to collect footage and imagery of geohazards (earthquakes, volcanoes...
Authors
Sara K. McBride, J. Bellizzi, S. Gin, G. Henry, D. F. Sumy, D. Baldwin, E. Fischer

Update on the Center for Engineering Strong-Motion Data (CESMD) Update on the Center for Engineering Strong-Motion Data (CESMD)

he Center for Engineering Strong-Motion Data (CESMD), an internationally utilized joint center of the U.S. Geological Survey (USGS) and the California Geological Survey (CGS), provides a unified access point for earthquake strong-motion records and station metadata from the CGS California Strong-Motion Instrumentation Program (CSMIP), the USGS National Strong-Motion Project (NSMP), the...
Authors
Lijam Hagos, H. Haddadi, Lisa Sue Schleicher, Jamison Haase Steidl, Lind Gee, M. Dhar

Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model

This report describes geodetic and geologic information used to constrain deformation models of the 2023 update to the National Seismic Hazard Model (NSHM), a set of deformation models to interpret these data, and their implications for earthquake rates in the western United States. Recent updates provide a much larger data set of Global Positioning System crustal velocities than used in...
Authors
Frederick Pollitz, Eileen L. Evans, Edward H. Field, Alexandra Elise Hatem, Elizabeth H. Hearn, Kaj M Johnson, Jessica R. Murray, Peter M. Powers, Zheng-Kang Shen, Crystal Wespestad, Yuehua Zeng

Viscoelastic fault-based model of crustal deformation for the 2023 update to the U.S. National Seismic Hazard Model Viscoelastic fault-based model of crustal deformation for the 2023 update to the U.S. National Seismic Hazard Model

The 2023 update to the National Seismic Hazard (NSHM) model is informed by several deformation models that furnish geodetically estimated fault slip rates. Here I describe a fault‐based model that permits estimation of long‐term slip rates on discrete faults and the distribution of off‐fault moment release. It is based on quantification of the earthquake cycle on a viscoelastic model of...
Authors
Frederick Pollitz
Was this page helpful?