Metal Transport in Mineralized Mountain Watersheds
The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling the export of water, metals, carbon, and nitrogen from Rocky Mountain headwater catchments under changing climate and land-use conditions.
Science Issue and Relevance
Understanding the manner in which hydrothermally altered rocks containing abundant sulfide minerals ('mineralized rocks') naturally release metal-rich water to the environment in mountain watersheds is essential for managing surface water resources with locally mineralized mountain headwaters, such as the Colorado River. Understanding how these sulfide weathering processes are influenced by changing climate and land-use conditions is particularly important for managing to protect future water quality and ecosystem health, and for establishing reasonable clean-up standards at active and abandoned mine sites in light of potentially changing background metal levels. Most studies of the environmental effects of sulfide weathering in mineralized watersheds are limited to sampling surface waters and springs because groundwater wells are not available. For this reason, our understanding of the deeper (>10s of meters) hydrogeology and geochemistry is severely limited. This study and its combined use of geophysical methods, geologic characterization, water chemistry data, and bedrock wells of varying depth (up to 250 feet) will address multiple fundamental, yet poorly studied, aspects of deep bedrock groundwater flow and metals transport in mineralized mountain blocks. Even though bedrock groundwater discharge may be a relatively small component of the annual surface water budget, its contribution to stream metal loads may be disproportionately large due to higher concentrations in this groundwater. This phenomenon has been understudied, and recent work suggests that it may be widely under-appreciated.
Methods to Address Issue
This project combines geophysical, hydrologic, and geochemical methods with geological and borehole data to accomplish the research objectives. Our interdisciplinary approach is necessitated by the inherent complexity of hydrogeochemical systems in mineralized mountain blocks. Work will be focused in Redwell Basin, a road-accessed (allowing drilling) alpine watershed near Crested Butte, Colorado containing extensive mineralized bedrock. Redwell basin overlies the unmined but well-delineated Mt. Emmons porphyry Mo deposit (one of the largest in the USA), produces both natural and mining-related acid-rock drainage, and is within the upper East River watershed where most research activities funded under Lawrence Berkeley National Laboratory Watershed Function Science Focus Area are occurring. Two deep boreholes will be drilled in the upper part of Redwell Basin and completed with multi-level monitoring wells to depths up to 250 feet. Multiple shallow piezometers will also be drilled and installed in groundwater discharge zones. These wells and piezometers will provide a window to the deeper groundwater system, and enable the collection of geologic, geophysical, hydraulic, and geochemical data that will be used in combination with numerical modeling to determine fluxes of groundwater and dissolved constituents through the bedrock. Geophysical surveys will be used to generalize spatially discrete borehole and outcrop observations over broader areas. This integrated research approach should help fill significant knowledge gaps regarding the hydrogeochemical significance of bedrock flow systems for shallow ecosystems in the upper East River area, and the effects of mineralization on the hydraulic properties of the rocks.
Below are data releases associated with this project.
Surface electrical resistivity tomography, magnetic, and gravity surveys in Redwell Basin and the greater East River watershed near Crested Butte, Colorado, 2017
Strontium isotopic data from the Mount Emmons-Redwell area, Crested Butte, Colorado
Whole rock major, minor, and trace element geochemistry of the upper part of the Mount Emmons-Redwell porphyry molybdenum (Climax-type) deposit, Redwell Basin, Crested Butte, Colorado
Airborne electromagnetic, magnetic, and radiometric survey, upper East River and surrounding watersheds near Crested Butte, Colorado, 2017
Hydrologic and geophysical data from high-elevation boreholes in Redwell Basin near Crested Butte, Colorado
Geochemical analyses of surface water, groundwater and springs surrounding Mount Emmons near Crested Butte, Colorado (ver. 2.0, September 2020)
Environmental tracer data from surface water and groundwater samples collected in Redwell Basin near Crested Butte, Colorado, 2017-2019
Below are publications associated with this project.
Mineralogical, magnetic and geochemical data constrain the pathways and extent of weathering of mineralized sedimentary rocks
Surface parameters and bedrock properties covary across a mountainous watershed: Insights from machine learning and geophysics
Direct observation of the depth of active groundwater circulation in an alpine watershed
Baseflow age distributions and depth of active groundwater flow in a snow‐dominated mountain headwater basin
Mountain-block recharge: A review of current understanding
A 20-year record of water chemistry in an alpine setting, Mount Emmons, Colorado, USA
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
Below are news stories associated with this project.
Below are partners associated with this project.
The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling the export of water, metals, carbon, and nitrogen from Rocky Mountain headwater catchments under changing climate and land-use conditions.
Science Issue and Relevance
Understanding the manner in which hydrothermally altered rocks containing abundant sulfide minerals ('mineralized rocks') naturally release metal-rich water to the environment in mountain watersheds is essential for managing surface water resources with locally mineralized mountain headwaters, such as the Colorado River. Understanding how these sulfide weathering processes are influenced by changing climate and land-use conditions is particularly important for managing to protect future water quality and ecosystem health, and for establishing reasonable clean-up standards at active and abandoned mine sites in light of potentially changing background metal levels. Most studies of the environmental effects of sulfide weathering in mineralized watersheds are limited to sampling surface waters and springs because groundwater wells are not available. For this reason, our understanding of the deeper (>10s of meters) hydrogeology and geochemistry is severely limited. This study and its combined use of geophysical methods, geologic characterization, water chemistry data, and bedrock wells of varying depth (up to 250 feet) will address multiple fundamental, yet poorly studied, aspects of deep bedrock groundwater flow and metals transport in mineralized mountain blocks. Even though bedrock groundwater discharge may be a relatively small component of the annual surface water budget, its contribution to stream metal loads may be disproportionately large due to higher concentrations in this groundwater. This phenomenon has been understudied, and recent work suggests that it may be widely under-appreciated.
Methods to Address Issue
This project combines geophysical, hydrologic, and geochemical methods with geological and borehole data to accomplish the research objectives. Our interdisciplinary approach is necessitated by the inherent complexity of hydrogeochemical systems in mineralized mountain blocks. Work will be focused in Redwell Basin, a road-accessed (allowing drilling) alpine watershed near Crested Butte, Colorado containing extensive mineralized bedrock. Redwell basin overlies the unmined but well-delineated Mt. Emmons porphyry Mo deposit (one of the largest in the USA), produces both natural and mining-related acid-rock drainage, and is within the upper East River watershed where most research activities funded under Lawrence Berkeley National Laboratory Watershed Function Science Focus Area are occurring. Two deep boreholes will be drilled in the upper part of Redwell Basin and completed with multi-level monitoring wells to depths up to 250 feet. Multiple shallow piezometers will also be drilled and installed in groundwater discharge zones. These wells and piezometers will provide a window to the deeper groundwater system, and enable the collection of geologic, geophysical, hydraulic, and geochemical data that will be used in combination with numerical modeling to determine fluxes of groundwater and dissolved constituents through the bedrock. Geophysical surveys will be used to generalize spatially discrete borehole and outcrop observations over broader areas. This integrated research approach should help fill significant knowledge gaps regarding the hydrogeochemical significance of bedrock flow systems for shallow ecosystems in the upper East River area, and the effects of mineralization on the hydraulic properties of the rocks.
Below are data releases associated with this project.
Surface electrical resistivity tomography, magnetic, and gravity surveys in Redwell Basin and the greater East River watershed near Crested Butte, Colorado, 2017
Strontium isotopic data from the Mount Emmons-Redwell area, Crested Butte, Colorado
Whole rock major, minor, and trace element geochemistry of the upper part of the Mount Emmons-Redwell porphyry molybdenum (Climax-type) deposit, Redwell Basin, Crested Butte, Colorado
Airborne electromagnetic, magnetic, and radiometric survey, upper East River and surrounding watersheds near Crested Butte, Colorado, 2017
Hydrologic and geophysical data from high-elevation boreholes in Redwell Basin near Crested Butte, Colorado
Geochemical analyses of surface water, groundwater and springs surrounding Mount Emmons near Crested Butte, Colorado (ver. 2.0, September 2020)
Environmental tracer data from surface water and groundwater samples collected in Redwell Basin near Crested Butte, Colorado, 2017-2019
Below are publications associated with this project.
Mineralogical, magnetic and geochemical data constrain the pathways and extent of weathering of mineralized sedimentary rocks
Surface parameters and bedrock properties covary across a mountainous watershed: Insights from machine learning and geophysics
Direct observation of the depth of active groundwater circulation in an alpine watershed
Baseflow age distributions and depth of active groundwater flow in a snow‐dominated mountain headwater basin
Mountain-block recharge: A review of current understanding
A 20-year record of water chemistry in an alpine setting, Mount Emmons, Colorado, USA
The suitability of using dissolved gases to determine groundwater discharge to high gradient streams
Below are news stories associated with this project.
Below are partners associated with this project.