Skip to main content
U.S. flag

An official website of the United States government


Documentation for the Skeletal Storage, Compaction, and Subsidence (CSUB) Package of MODFLOW 6

This report describes the skeletal storage, compaction and subsidence (CSUB) package of MODFLOW 6. The CSUB package simulates the vertical compaction of compressible sediments and land subsidence. The package simulates groundwater storage changes and elastic compaction in coarse-grained aquifer sediments. The CSUB package also simulates groundwater storage changes and elastic and inelastic compact

Detection and measurement of land-surface deformation, Pajaro Valley, Santa Cruz and Monterey counties, California, 2015–18

Land-surface deformation (subsidence) caused by groundwater withdrawal is identified as an undesirable result in the Pajaro Valley Water Management Agency’s Basin Management Plan and California’s Sustainable Groundwater Management Act. In Pajaro Valley, groundwater provides nearly 90 percent of the total water supply. To aid the development of sustainable groundwater management criteria, the U.S.

Mitigating land subsidence in the Coachella Valley, California, USA: An emerging success story

Groundwater has been a major source of agricultural, municipal, and domestic water supply since the early 1920s in the Coachella Valley, California, USA. Land subsidence, resulting from aquifer-system compaction and groundwater-level declines, has been a concern of the Coachella Valley Water District (CVWD) since the mid-1990s. As a result, the CVWD has implemented several projects to address grou

Detection and measurement of land subsidence and uplift using interferometric synthetic aperture radar, San Diego, California, USA, 2016–2018

Land subsidence associated with groundwater-level declines is stipulated as an “undesirable effect” in California’s Sustainable Groundwater Management Act (SGMA), and has been identified as a potential issue in San Diego, California, USA. The United States Geological Survey (USGS), the Sweetwater Authority, and the City of San Diego, undertook a cooperative study to better understand the hydromech

Subsidence of agricultural lands in the Sacramento‐San Joaquin Delta, California: Role of aqueous and gaseous carbon fluxes

To examine the causes of land subsidence on marshes drained for agriculture, carbon fluxes and changes in land‐surface elevation were determined on three islands in the Sacramento‐San Joaquin Delta, California. Over the time period of March 1990 to May 1992, gaseous CO2 fluxes were determined approximately monthly using closed chambers, and dissolved carbon fluxes were determined from the dissolve