2021 McKenzie River Topobathymetric Lidar Validation - USGS Field Survey Data
U.S. Geological Survey (USGS) scientists conducted field data collection efforts between July 19th and 31st, 2021 over a large stretch of the McKenzie River in Oregon using high accuracy surveying technologies. The work was initiated as an effort to validate commercially acquired topobathymetric light detection and ranging (lidar) data that was collected coincidentally between July 26th and 30th, 2021 for the USGS 3D Elevation Program (3DEP). The goal was to compare and validate the airborne lidar data to topographic, bathymetric, structural, and infrastructural data collected through more traditional means (e.g., Global Navigational Satellite System (GNSS) surveying). Evaluating these data will provide valuable information on the performance of inland topobathymetric lidar mapping capabilities and their potential for use and inclusion in the USGS National Geospatial Program 3D Elevation Program. The airborne topobathymetric lidar data will be used for developing reliable hydraulic models, which can be used to model potential flood inundation and analysis for other potential hazards such as landslides. The bathymetric lidar data will also be used for characterization of endangered species aquatic habitat, including that of salmon and steelhead trout species. Furthermore, a large portion of the McKenzie River corridor that was mapped by the airborne topobathymetric lidar was impacted by the Holiday Farm Fire that burned over 170,000 acres during September of 2020 and the airborne data will be used to support post-fire geomorphic change detection.
Citation Information
Publication Year | 2023 |
---|---|
Title | 2021 McKenzie River Topobathymetric Lidar Validation - USGS Field Survey Data |
DOI | 10.5066/P9Z25KVQ |
Authors | Jeffrey R Irwin, Jeffrey J Danielson, Minsu Kim (CTR), Brandon T Overstreet, James S White, Seonkyung Park |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Earth Resources Observation and Science (EROS) Center |
Rights | This work is marked with CC0 1.0 Universal |