We created a probabilistic classification model using the nonparametric machine learning technique 'Random Forests' for oil and gas development potential from low (0) to high (1) across the western US. The six predictor variables used in the model were: geophysical data showing aeromagnetic, isostatic gravity, and Bouguer gravity anomalies, geology, topography and bedrock depth. Our binary response variable was geospatial point data on producing and non-producing oil and gas wells. Our estimates provide insights into the trajectory and eventual endpoint of oil and gas development, but the rate and exact location of development will be subject to additional factors not considered such as market demand, the capacity to transport oil or gas to consumers, and federal air and water quality laws (e.g. Clean Air Act, climate change legislation).