OpenFOAM models of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, Hawaii
June 5, 2023
OpenFOAM Computational Fluid Dynamics (CFD) models were developed to simulate wave energy dissipation across natural rough reef surfaces on the reef flat off Waiakane, Molokai, Hawaii, to understand this process in the context of reef restoration design. A total of 140 models were developed (70 per low- and 70 per high-bed-relief domains). Models were calibrated and validated with oceanographic datasets collected in 2018. This data release presents the 140 model scenarios that can be readily input into OpenFOAM to recreate the results, in addition to a csv file indicating the parameters used for each model scenario. These model data accompany Norris and others (2023) OpenFOAM Computational Fluid Dynamics (CFD) models were developed to simulate wave energy dissipation across natural rough reef surfaces on the reef flat off Waiakane, Molokai, Hawaii, to understand this process in the context of reef restoration design. A total of 140 models were developed (70 per low- and 70 per high-bed-relief domains). Models were calibrated and validated with oceanographic datasets collected in 2018. This data release presents the 140 model scenarios that can be readily input into OpenFOAM to recreate the results, in addition to a csv file indicating the parameters used for each model scenario.
These model data accompany Norris and others (2023) [Norris, B.K., Storlazzi, C.D., Pomeroy, A.W.M., Rosenberger, K.J., Logan, J.B., and Cheriton, O.M., 2023, Combining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design: Coastal Engineering, https://doi.org/10.1016/j.coastaleng.2023.104331].
These model data accompany Norris and others (2023) [Norris, B.K., Storlazzi, C.D., Pomeroy, A.W.M., Rosenberger, K.J., Logan, J.B., and Cheriton, O.M., 2023, Combining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design: Coastal Engineering, https://doi.org/10.1016/j.coastaleng.2023.104331].
Citation Information
Publication Year | 2023 |
---|---|
Title | OpenFOAM models of low- and high-relief sites from the coral reef flat off Waiakane, Molokai, Hawaii |
DOI | 10.5066/P933TO2Q |
Authors | Benjamin K Norris, Curt D. Storlazzi, Andrew W. Pomeroy |
Product Type | Data Release |
Record Source | USGS Asset Identifier Service (AIS) |
USGS Organization | Pacific Coastal and Marine Science Center |
Rights | This work is marked with CC0 1.0 Universal |
Related
Combining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design
Coral reefs are effective natural barriers that protect adjacent coastal communities from hazards such as erosion and storm-induced flooding. However, the degradation of coral reefs compromises their ability to protect against these hazards, making degraded reefs a target for restoration. There have been limited field and numerical modeling studies conducted to understand how an increase...
Authors
Benjamin K Norris, Curt Storlazzi, Andrew W. M. Pomeroy, Kurt J. Rosenberger, Joshua B. Logan, Olivia Cheriton
Benjamin K Norris
Research Oceanographer
Research Oceanographer
Email
Phone
Curt Storlazzi, PhD
Research Geologist
Research Geologist
Email
Phone
Related
Combining field observations and high-resolution numerical modeling to demonstrate the effect of coral reef roughness on turbulence and its implications for reef restoration design
Coral reefs are effective natural barriers that protect adjacent coastal communities from hazards such as erosion and storm-induced flooding. However, the degradation of coral reefs compromises their ability to protect against these hazards, making degraded reefs a target for restoration. There have been limited field and numerical modeling studies conducted to understand how an increase...
Authors
Benjamin K Norris, Curt Storlazzi, Andrew W. M. Pomeroy, Kurt J. Rosenberger, Joshua B. Logan, Olivia Cheriton
Benjamin K Norris
Research Oceanographer
Research Oceanographer
Email
Phone
Curt Storlazzi, PhD
Research Geologist
Research Geologist
Email
Phone