Publications
Filter Total Items: 2785
The ShakeOut earthquake source and ground motion simulations The ShakeOut earthquake source and ground motion simulations
The ShakeOut Scenario is premised upon the detailed description of a hypothetical Mw 7.8 earthquake on the southern San Andreas Fault and the associated simulated ground motions. The main features of the scenario, such as its endpoints, magnitude, and gross slip distribution, were defined through expert opinion and incorporated information from many previous studies. Slip at smaller...
Authors
R.W. Graves, Douglas B. Houston, K.W. Hudnut
Seismic hazard maps for Haiti Seismic hazard maps for Haiti
We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements...
Authors
Arthur Frankel, Stephen Harmsen, Charles Mueller, Eric Calais, Jennifer Haase
Seismic seiches Seismic seiches
Seismic seiche is a term first used by Kvale (1955) to discuss oscillations of lake levels in Norway and England caused by the Assam earthquake of August 15, 1950. This definition has since been generalized to apply to standing waves set up in closed, or partially closed, bodies of water including rivers, shipping channels, lakes, swimming pools and tanks due to the passage of seismic...
Authors
Arthur McGarr
Economic resilience lessons from the ShakeOut earthquake scenario Economic resilience lessons from the ShakeOut earthquake scenario
Following a damaging earthquake, “business interruption” (BI)—reduced production of goods and services—begins and continues long after the ground shaking stops. Economic resilience reduces BI losses by making the best use of the resources available at a given point in time (static resilience) or by speeding recovery through repair and reconstruction (dynamic resilience), in contrast to...
Authors
A. Wein, A. Rose
Reply to "Comment on 'A model of earthquake triggering probabilities and application to dynamic deformations constrained by ground motion observations' by Ross Stein" Reply to "Comment on 'A model of earthquake triggering probabilities and application to dynamic deformations constrained by ground motion observations' by Ross Stein"
No abstract available.
Authors
J. Gomberg, K. Felzer
High-frequency filtering of strong-motion records High-frequency filtering of strong-motion records
The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high...
Authors
J. Douglas, D.M. Boore
Quantifying the influence of sea ice on ocean microseism using observations from the Bering Sea, Alaska Quantifying the influence of sea ice on ocean microseism using observations from the Bering Sea, Alaska
Microseism is potentially affected by all processes that alter ocean wave heights. Because strong sea ice prevents large ocean waves from forming, sea ice can therefore significantly affect microseism amplitudes. Here we show that this link between sea ice and microseism is not only a robust one but can be quantified. In particular, we show that 75–90% of the variability in microseism...
Authors
Victor C. Tsai, Daniel E. McNamara
Long-period earthquake simulations in the Wasatch Front, UT: misfit characterization and ground motion estimates Long-period earthquake simulations in the Wasatch Front, UT: misfit characterization and ground motion estimates
In this research we characterize the goodness-of-fit between observed and synthetic seismograms from three small magnitude (M3.6-4.5) earthquakes in the region using the Wasatch Front community velocity model (WCVM) in order to determine the ability of the WCVM to predict earthquake ground motions for scenario earthquake modeling efforts. We employ the goodness-of-fit algorithms and...
Authors
Morgan P. Moschetti, Leonardo Ramírez-Guzmán
Representation of bidirectional ground motions for design spectra in building codes Representation of bidirectional ground motions for design spectra in building codes
The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in...
Authors
Jonathan P. Stewart, Norman A. Abrahamson, Gail M. Atkinson, Jack W. Beker, David M. Boore, Yousef Bozorgnia, Kenneth W. Campbell, Craig D. Comartin, I.M. Idriss, Marshall Lew, Michael Mehrain, Jack P. Moehle, Farzad Naeim, Thomas A. Sabol
Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models
Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and...
Authors
Robert W. Graves, Brad T. Aagaard
Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system Earthquake casualty models within the USGS Prompt Assessment of Global Earthquakes for Response (PAGER) system
Since the launch of the USGS’s Prompt Assessment of Global Earthquakes for Response (PAGER) system in fall of 2007, the time needed for the U.S. Geological Survey (USGS) to determine and comprehend the scope of any major earthquake disaster anywhere in the world has been dramatically reduced to less than 30 min. PAGER alerts consist of estimated shaking hazard from the ShakeMap system...
Authors
Kishor Jaiswal, David J. Wald, Paul S. Earle, Keith A. Porter, Mike Hearne
Deep rock damage in the san andreas fault revealed by P- and S-type fault-zone-guided waves Deep rock damage in the san andreas fault revealed by P- and S-type fault-zone-guided waves
Damage to fault-zone rocks during fault slip results in the formation of a channel of low seismic-wave velocities. Within such channels guided seismic waves, denoted by Fg, can propagate. Here we show with core samples, well logs and Fg-waves that such a channel is crossed by the SAFOD (San Andreas Fault Observatory at Depth) borehole at a depth of 2.7 km near Parkfield, California, USA...
Authors
William L. Ellsworth, Peter E. Malin