Skip to main content
U.S. flag

An official website of the United States government

Groundwater contributions of flow, nitrate, and dissolved organic carbon to the lower San Joaquin River, California, 2006-08

October 29, 2013

The influence of groundwater on surface-water quality in the San Joaquin River, California, was examined for a 59-mile reach from the confluence with Salt Slough to Vernalis. The primary objective of this study was to quantify the rate of groundwater discharged to the lower San Joaquin River and the contribution of nitrate and dissolved organic carbon concentrations to the river. Multiple lines of evidence from four independent approaches were used to characterize groundwater contributions of nitrogen and dissolved organic carbon. Monitoring wells (in-stream and bank wells), streambed synoptic surveys (stream water and shallow groundwater), longitudinal profile surveys by boat (continuous water-quality parameters in the stream), and modeling (MODFLOW and VS2DH) provided a combination of temporal, spatial, quantitative, and qualitative evidence of groundwater contributions to the river and the associated quality. Monitoring wells in nested clusters in the streambed (in-stream wells) and on both banks (bank wells) along the river were monitored monthly from September 2006 to January 2009. Nitrate concentrations in the bank wells ranged from less than detection—that is, less than 0.01 milligrams per liter (mg/L) as nitrogen (N)—to approximately 13 mg/L as N. Nitrate was not detected at 17 of 26 monitoring wells during the study period. Dissolved organic carbon concentrations among monitoring wells were highly variable, but they generally ranged from 1 to 4 mg/L. In a previous study, 14 bank wells were sampled once in 1988 following their original installation. With few exceptions, specific conductivity and nitrate concentrations measured in this study were virtually identical to those measured 20 years ago. Streambed synoptic measurements were made by using a temporarily installed drive-point piezometer at 113 distinct transects across the stream during 4 sampling events. Nitrate concentrations exceeded the detection limit of 0.01 mg/L as N in 5 percent of groundwater samples collected from the in-stream wells as part of the synoptic surveys. Only 7 of the 113 cross-sectional transects had nitrate concentrations greater than 1 mg/L as N. In contrast, surface waters in the San Joaquin River tended to have nitrate concentrations in the 1–3 mg/L as N range. A zone of lower oxygen (less than 2 mg/L) in the streambed could limit nitrate contributions from regional groundwater flow because nitrate can be converted to nitrogen gas within this zone. Appreciable concentrations of ammonium (average concentration was 1.92 mg/L as N, and 95th percentile was 10.34 mg/L as N) in the shallow groundwater, believed to originate from anoxic mineralization of streambed sediments, could contribute nitrogen to the overlying stream as nitrate following in-stream nitrification, however. Dissolved organic carbon concentrations were highly variable in the shallow groundwater below the river (1 to 6 ft below streambed) and generally ranged between 1 and 5 mg/L, but had maximum concentrations in the 15–25 mg/L range. The longitudinal profile surveys were not particularly useful in identifying groundwater discharge areas. However, the longitudinal approach described in this report was useful as a baseline survey of measured water-quality parameters and for identifying tributary inflows that affect surface-water concentrations of nitrate. Results of the calibrated MODFLOW model indicated that the simulated groundwater discharge rate was approximately 1.0 cubic foot per second per mile (cfs/mi), and the predominant horizontal groundwater flow direction between the deep bank wells was westward beneath the river. The modeled (VS2DH) flux values (river gain versus river loss) were calculated for the irrigation and non-irrigation season, and these fluxes were an order of magnitude less than those from MODFLOW. During the irrigation season, the average river gain was 0.11 cfs/mi, and the average river loss was −0.05 cfs/mi. During the non-irrigation season, the average river gain was 0.10 cfs/mi, and the average river loss was -0.08 cfs/mi. Information on groundwater interactions and water quality collected for this study was used to estimate loads of nitrate and dissolved organic carbon from the groundwater to the San Joaquin River. Estimated loads of dissolved inorganic nitrogen and dissolved organic carbon were calculated by using concentrations measured during four streambed synoptic surveys and the estimated groundwater discharge rate to the San Joaquin River from MODFLOW of 1 cfs/mi. The estimated groundwater loads to the San Joaquin River for dissolved inorganic nitrogen and dissolved organic carbon were 300 and 350 kilograms per day, respectively. These loads represent 9 and 7 percent, respectively, of the estimated instantaneous surface-water loads for dissolved inorganic nitrogen and dissolved organic carbon at the most downstream site, Vernalis, measured during the four streambed synoptic surveys.

Publication Year 2013
Title Groundwater contributions of flow, nitrate, and dissolved organic carbon to the lower San Joaquin River, California, 2006-08
DOI 10.3133/sir20135151
Authors Celia Zamora, Randy A. Dahlgren, Charles R. Kratzer, Bryan D. Downing, Ann D. Russell, Peter D. Dileanis, Brian A. Bergamaschi, Steven P. Phillips
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2013-5151
Index ID sir20135151
Record Source USGS Publications Warehouse
USGS Organization California Water Science Center