Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions
Salt evaporation ponds have played an important role as habitat for migratory waterbirds across the world, however, efforts to restore and manage these habitats to maximize their conservation value has proven to be challenging. For example, salinity reduction has been a goal for restoring and managing former salt evaporation ponds to support waterbirds in the South Bay Salt Pond Restoration Project in San Francisco Bay, California, USA. Here, we describe a case study of unexpected consequences of a low-dissolved oxygen (DO) event on trophic interactions in a salt pond system following management actions to reduce salinity concentrations. We document the ramifications of an anoxic event in water quality including salinity, DO, and temperature, and in the response of the biota including prey fish biomass, numerical response by California Gulls (Larus californicus), and chick survival of Forster's Tern (Sterna forsteri). Management actions intended to protect receiving waters resulted in decreased DO concentrations that collapsed to zero for ≥ 4 consecutive days, resulting in an extensive fish kill. DO depletion likely resulted from an algal bloom that arose following transition of the pond system from high to low salinity as respiration and decomposition outpaced photosynthetic production. We measured a ≥ 6-fold increase in biomass of fish dropped on the levee by foraging avian predators compared with weeks prior to and following the low-DO event. California Gulls rapidly responded to the availability of aerobically-stressed and vulnerable fish and increased in abundance by two orders of magnitude. Mark-recapture analysis of 254 Forster's Tern chicks indicated that their survival declined substantially following the increase in gull abundance. Thus, management actions to reduce salinity concentrations resulted in cascading effects in trophic interactions that serves as a cautionary tale illustrating the importance of understanding the interaction of water quality and trophic structure when managing restoration of salt ponds.
Citation Information
Publication Year | 2015 |
---|---|
Title | Unintended consequences of management actions in salt pond restoration: cascading effects in trophic interactions |
DOI | 10.1371/journal.pone.0119345 |
Authors | John Y. Takekawa, Joshua T. Ackerman, Arriana Brand, Tanya R. Graham, Collin A. Eagles-Smith, Mark P. Herzog, Brent R. Topping, Gregory Shellenbarger, James S. Kuwabara, Eric Mruz, Sara L. Piotter, Nicole D. Athearn |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | PLoS ONE |
Index ID | 70148462 |
Record Source | USGS Publications Warehouse |
USGS Organization | Forest and Rangeland Ecosystem Science Center; Western Ecological Research Center; Contaminant Biology Program |