Climate-Driven Shifts in Prairie Pothole Wetlands: Assessing Future Impacts to Critical Waterfowl Habitats
The North American Prairie Pothole Region (PPR) is an expansive region that covers parts of five Midwestern states and three Canadian provinces. This region contains millions of wetlands in which waterfowl breed and from which 50-80% of the continent's migratory ducks originate each year.
Previous modeling efforts indicated that climate change would result in a shift of suitable waterfowl breeding habitat from the central PPR to the southeastern portion of the region, an area where the majority of wetlands have been drained. If this future scenario were to materialize, a significant restoration effort would be needed in the southeastern PPR to support waterfowl production. However, more recent research has revealed that changes in climate are influencing these critical wetland habitats in novel ways, and previous modeling results may no longer be valid. Land and natural resource managers are in need of more accurate, up-to-date scientific information in order to make fully informed planning decisions about these important wetlands and waterfowl habitat.
This project aimed to improve our understanding of how future climate changes might impact wetland ecosystems and waterfowl habitats of the PPR. Project researchers used a newly developed wetland simulation model to simulate hydrologic and chemical conditions of prairie pothole wetlands under various climate change scenarios. Results were compared to results from previous modeling and analysis efforts to gain a better understanding of future impacts to wetlands and the ability of prairie pothole wetlands to continue meeting the habitat needs of breeding waterfowl. Throughout this effort, the project team worked directly with land managers from the U.S. Fish and Wildlife Service’s Habitat and Population Evaluation Team and Chase Lake Wetland Management District in North Dakota to ensure that study results and science products can directly inform climate adaptation plans for waterfowl habitat.
- Source: USGS Sciencebase (id: 5b33be6fe4b040769c172fad)
David Mushet, PhD (Former Employee)
Chief - Climate and Land-use Branch
Owen McKenna, PhD
Research Ecologist
The North American Prairie Pothole Region (PPR) is an expansive region that covers parts of five Midwestern states and three Canadian provinces. This region contains millions of wetlands in which waterfowl breed and from which 50-80% of the continent's migratory ducks originate each year.
Previous modeling efforts indicated that climate change would result in a shift of suitable waterfowl breeding habitat from the central PPR to the southeastern portion of the region, an area where the majority of wetlands have been drained. If this future scenario were to materialize, a significant restoration effort would be needed in the southeastern PPR to support waterfowl production. However, more recent research has revealed that changes in climate are influencing these critical wetland habitats in novel ways, and previous modeling results may no longer be valid. Land and natural resource managers are in need of more accurate, up-to-date scientific information in order to make fully informed planning decisions about these important wetlands and waterfowl habitat.
This project aimed to improve our understanding of how future climate changes might impact wetland ecosystems and waterfowl habitats of the PPR. Project researchers used a newly developed wetland simulation model to simulate hydrologic and chemical conditions of prairie pothole wetlands under various climate change scenarios. Results were compared to results from previous modeling and analysis efforts to gain a better understanding of future impacts to wetlands and the ability of prairie pothole wetlands to continue meeting the habitat needs of breeding waterfowl. Throughout this effort, the project team worked directly with land managers from the U.S. Fish and Wildlife Service’s Habitat and Population Evaluation Team and Chase Lake Wetland Management District in North Dakota to ensure that study results and science products can directly inform climate adaptation plans for waterfowl habitat.
- Source: USGS Sciencebase (id: 5b33be6fe4b040769c172fad)