The distribution of water on the landscape influences many ecological functions such as the distribution of vegetation, soil development and the cycle of chemical nutrients. All of these functions are subject to change as a result of variations in the duration of soil water saturation and flow of water through the distributed channel networks of watersheds.
Webinar: Assessing Soil Moisture Availability across the Gulf of Alaska Region
View this webinar to learn how scientists are establishing a soil moisture map and groundwater prediction model for the Gulf of Alaska region.
Date Recorded
Tuesday, February 28, 2017
Summary
The distribution of water on the landscape influences many ecological functions such as the distribution of vegetation, soil development and the cycle of chemical nutrients. All of these functions are subject to change as a result of variations in the duration of soil water saturation and flow of water through the distributed channel networks of watersheds. The landscape of the Pacific coastal temperate rainforest (PCTR) or the Gulf of Alaska Region are dominated by numerous landforms. The intensity and duration of the cold, wet climate is the driving force that maintains the persistent features such as vegetation and soils on these landforms. Currently, soil moisture serves as an indicator of function, but prediction of soil moisture across the landscape is limited due to the lack of quantitative assessment of the distribution of groundwater in the PCTR. The goal of this research was to establish a spatially explicit soil moisture map and a groundwater prediction model for a portion of the Gulf of Alaskan drainage basin.
Research support from: Alaska Climate Adaptation Science Center
Resources
Below are multimedia items associated with this project.
The distribution of water on the landscape influences many ecological functions such as the distribution of vegetation, soil development and the cycle of chemical nutrients. All of these functions are subject to change as a result of variations in the duration of soil water saturation and flow of water through the distributed channel networks of watersheds.
View this webinar to learn how scientists are establishing a soil moisture map and groundwater prediction model for the Gulf of Alaska region.
Date Recorded
Tuesday, February 28, 2017
Summary
The distribution of water on the landscape influences many ecological functions such as the distribution of vegetation, soil development and the cycle of chemical nutrients. All of these functions are subject to change as a result of variations in the duration of soil water saturation and flow of water through the distributed channel networks of watersheds. The landscape of the Pacific coastal temperate rainforest (PCTR) or the Gulf of Alaska Region are dominated by numerous landforms. The intensity and duration of the cold, wet climate is the driving force that maintains the persistent features such as vegetation and soils on these landforms. Currently, soil moisture serves as an indicator of function, but prediction of soil moisture across the landscape is limited due to the lack of quantitative assessment of the distribution of groundwater in the PCTR. The goal of this research was to establish a spatially explicit soil moisture map and a groundwater prediction model for a portion of the Gulf of Alaskan drainage basin.
Research support from: Alaska Climate Adaptation Science Center
Resources
Below are multimedia items associated with this project.
The distribution of water on the landscape influences many ecological functions such as the distribution of vegetation, soil development and the cycle of chemical nutrients. All of these functions are subject to change as a result of variations in the duration of soil water saturation and flow of water through the distributed channel networks of watersheds.
The distribution of water on the landscape influences many ecological functions such as the distribution of vegetation, soil development and the cycle of chemical nutrients. All of these functions are subject to change as a result of variations in the duration of soil water saturation and flow of water through the distributed channel networks of watersheds.