Skip to main content
U.S. flag

An official website of the United States government

A global shape model for Saturn's moon Enceladus from a dense photogrammetric control network

August 3, 2020

A planetary bodys global shape provides both insight into its geologic evolution, and a key element of any Planetary Spatial Data Infrastructure (PSDI). NASAs Cassini mission to Saturn acquired more than 600 moderate- to high-resolution images (< 500 m/pixel) of the small, geologically active moon Enceladus. The moons internal global ocean and intriguing geology mark it as a candidate for future exploration and motivates the development of a PSDI. Recently, Bland et al. (2018) provided two foundational elements of this PSDI: geodetic control and orthoimages. To provide the third foundational data set we generate a new shape model for Enceladus from Cassini images and a dense photogrammetric control network (nearly 1 million tie points) using the United States Geological Surveys Integrated Software for Imagers and Spectrometers (ISIS) and the Ames Stereo Pipeline (ASP). The new shape model is near-global in extent and gridded to 2.2 km/pixel, ~50 times better resolution than previous global models. Our calculated triaxial shape, rotation rate, and pole orientation for Enceladus is consistent with current IAU values to within the error; however, we determined a new prime meridian offset (Wo) of 7.063o. We calculate Enceladus long-wavelength topography by subtracting the best-fit triaxial ellipsoid from our shape model. The result is comparable to previous global models but can resolve topographic features as small as 5-7 km across in certain areas. To evaluate the spatially varying quality of the model we calculate the point density (variable from 5 to more than 50 per pixel), normalized median absolute deviation of the points within each pixel (typically less than 100 m), and the minimum expected vertical precision of each point (ranging from 2 km to 29 m).

Citation Information

Publication Year 2020
Title A global shape model for Saturn's moon Enceladus from a dense photogrammetric control network
DOI 10.5194/isprs-annals-V-3-2020-579-2020
Authors Michael T. Bland, Lynn A. Weller, David Mayer, Brent Archinal
Publication Type Conference Paper
Publication Subtype Conference Paper
Index ID 70212308
Record Source USGS Publications Warehouse
USGS Organization Astrogeology Science Center

Related Content