Ben Brooks is a Research Geophysicist in the Earthquake Hazards Program.
Ben Brooks is a research geophysicist in the U.S. Geological Survey's Earthquake Science Center in Moffett Field, California. His research focuses on implementing and developing novel sensors to help better understand how, when, and why faults slip. He uses geodetic sensors (GNSS, laser scanning, and GNSS-Acoustic submarine techniques) to study the shallower/ near-field portions of subduction zones and strike-slip faults in the co-, inter- and post-seismic phases of the earthquake cycle. He also uses low-cost sensors (i.e. smartphones) in stand-alone and/or hybrid earthquake early warning networks.
Science and Products
External Grants - Overview
The U.S. Geological Survey (USGS) provides support for research that will assist in achieving the goals of the Earthquake Hazards Program. The goal is to mitigate earthquake losses that can occur in many parts of the nation by providing earth science data and assessments essential for land-use planning, engineering design, and emergency preparedness decisions.
High-resolution seismic imaging data acquired in 2021 across a trace of the San Andreas Fault at Mee Ranch, Monterey County, California
In April of 2021, the U.S. Geological Survey conducted a high-resolution seismic survey at Mee Ranch in Monterey County, California. Both passive- and active-source seismic data were acquired using DTCC SmartSolo 3-component nodal seismograph systems ("nodes"), which continuously recorded data at rates up to 2000 samples per second. For passive-source acquisition, a 6x5 grid of nodes was deployed
Filter Total Items: 23
Commentary: The role of geodetic algorithms for earthquake early warning in Cascadia
The ShakeAlert earthquake early warning (EEW) system issues public alerts in California and will soon extend to Oregon and Washington. The Cascadia subduction zone presents significant new challenges and opportunities for EEW. Initial publications suggested that EEW algorithms based on Global Navigation Satellite System (GNSS) data could provide improved warning for intraslab events and dramatical
Authors
Jeffrey McGuire, Sarah E. Minson, Jessica R. Murray, Benjamin A. Brooks
Documentation of Surface Fault Rupture and Ground‐Deformation Features Produced by the 4 and 5 July 2019 Mw 6.4 and Mw 7.1 Ridgecrest Earthquake Sequence
The MwMw 6.4 and MwMw 7.1 Ridgecrest earthquake sequence occurred on 4 and 5 July 2019 within the eastern California shear zone of southern California. Both events produced extensive surface faulting and ground deformation within Indian Wells Valley and Searles Valley. In the weeks following the earthquakes, more than six dozen scientists from government, academia, and the private sector carefully
Authors
Daniel J. Ponti, James Luke Blair, Rosa Carla M, Kate Thomas, Alexandra Pickering, Sinan Akciz, Stephen J. Angster, Jean-Philipe Avouac, Jeffrey Bachhuber, Steven Bacon, Nicolas C. Barth, S. Bennett, Kelly Blake, Stephan Bork, Benjamin A. Brooks, Thomas Bullard, Paul A. Burgess, Colin Chupik, Timothy E. Dawson, Michael DeFrisco, Jaime E. Delano, Stephen B. DeLong, James D. Dolan, Andrea Donnellan, Christopher DuRoss, Todd Ericksen, Erik Frost, Gareth J. Funning, Ryan D. Gold, Nicholas A Graehl, Carlos Gutierrez, Elizabeth Haddon, Alexandra Elise Hatem, John Helms, Janis Hernandez, Christopher S. Hitchcock, Peter Holland, Kenneth W. Hudnut, Katherine J. Kendrick, Richard D Koehler, Ozgur Kozaci, Tyler C. Ladinsky, Robert Leeper, Christopher Madugo, Maxime Mareschal, James McDonald, Devin McPhillips, Christopher Milliner, Daniel Mongovin, Alexander Morelan, Stephanie Nale, Johanna Nevitt, Matt O'Neal, Brian J. Olsen, Michael Oskin, Salena Padilla, Jason Patton, Belle E. Philibosian, Ian Pierce, Cynthia Pridmore, Nathaniel Roth, David Sandwell, Katherine Scharer, Gordon G. Seitz, Drake Singleton, Bridget Smith-Konter, Eleanor Spangler, Brian J. Swanson, Jessica Thompson Jobe, Jerome Treiman, Francesca Valencia, Joshua Vanderwal, Alana Williams, Xiaohua Xu, Judith Zachariasen, Jade Zimmerman, Robert Zinke
Kinematics of fault slip associated with the July 4-6 2019 Ridgecrest, Californai earthquakes sequence
The 2019 Ridgecrest, California, earthquake sequence produced observable crustal deformation over much of central and southern California, as well as surface rupture over several tens of kilometers. To obtain a detailed picture of the fault slip involved in the 4 July M 6.4 foreshock and 6 July M 7.1 mainshock, we combine strong‐motion seismic waveforms with crustal deformation observations to obt
Authors
Fred Pollitz, Jessica R. Murray, Jerry L. Svarc, Charles Wicks, Evelyn Roeloffs, Sarah E. Minson, Katherine Scharer, Katherine J. Kendrick, Kenneth W. Hudnut, Johanna Nevitt, Benjamin A. Brooks, David Mencin
EERI earthquake reconnaissance report: 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake Sequence began the morning of 4 July 2019 with an M6.4 earthquake at 10:33 a.m., closely following several small foreshocks. The epicenter of this event was roughly 11 miles (18 km) east-northeast of Ridgecrest (Figure 1) within the Naval Air Weapons Station China Lake (NAWS-CL). Seismic and geologic data established that the M6.4 earthquake occurred primarily along a ste
Authors
EERI Learning from Earthquakes Program, Katherine Scharer
Surface displacement distributions for the July 2019 Ridgecrest, California earthquake ruptures
Surface rupture in the 2019 Ridgecrest, California, earthquake sequence occurred along two orthogonal cross faults and includes dominantly left‐lateral and northeast‐striking rupture in the Mw 6.4 foreshock and dominantly right‐lateral and northwest‐striking rupture in the Mw 7.1 mainshock. We present >650 field‐based, surface‐displacement observations for these ruptures and synthesize our results
Authors
Christopher DuRoss, Ryan D. Gold, Timothy E. Dawson, Katherine Scharer, Katherine J. Kendrick, Sinan Akciz, Stephen J. Angster, Jeffery Bachhuber, Steven Bacon, Scott E. K. Bennett, Luke Blair, Benjamin A. Brooks, Thomas Bullard, W. Paul Burgess, Colin Chupik, Michael DeFrisco, Jaime Delano, James D. Dolan, Erik Frost, Nick Graehl, Elizabeth Haddon, Alexandra Elise Hatem, Janis Hernandez, Christopher S. Hitchcock, Kennth Hudnut, Jessica Thompson Jobe, Richard D Koehler, Ozgur Kozaci, Tyler C. Ladinsky, Christopher Madugo, Devin McPhillips, Christopher Milliner, Alexander Morelan, Brian Olson, Jason Patton, Belle E. Philibosian, Alexandra J. Pickering, Ian Pierce, Daniel J. Ponti, Gordon G. Seitz, Eleanor Spangler, Brian J. Swanson, Kate Thomas, Jerome Treiman, Francesca Valencia, Alana Williams, Robert Zinke
Airborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California
Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the M 6.4 foreshock, occurred on July 4 on a ~17 km long, northeast-southwest oriented, left-lateral zone of faulting. Following the M 7.1 mainshock on July 5 (local time), extensive northwest-southeast-oriented, right-lateral faulting was then also mapped along a ~50 km long zone of faults, including sub-paral
Authors
Kenneth W. Hudnut, Benjamin A. Brooks, Katherine M. Scharer, Janis L. Hernandez, Timothy E. Dawson, Michael E. Oskin, J. Ramon Arrowsmith, Christine A. Goulet, Kelly Blake, Matthew A. Boggie, Stephan Bork, Craig L. Glennie, J.C. Fernandez-Diaz, Abhinav Singhania, Darren Hauser, Sven Sorhus
Mechanics of near-field deformation during co- and post-seismic shallow fault slip
Poor knowledge of how faults slip and distribute deformation in the shallow crust hinders efforts to mitigate hazards where faults increasingly intersect with the expanding global population at Earth’s surface. Here we analyze two study sites along the 2014 M 6.0 South Napa, California, earthquake rupture, each dominated by either co- or post-seismic shallow fault slip. We combine mobile laser sca
Authors
Johanna Nevitt, Benjamin A. Brooks, Rufus D. Catchings, Mark Goldman, Todd Ericksen, Craig L. Glennie
Illuminating subduction zone rheological properties in the wake of a giant earthquake
Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 Mw 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surfa
Authors
Jonathan Weiss, Qiang Qiu, Sylvain Barbot, Tim J. Wright, James H. Foster, Alexander Saunders, Benjamin A. Brooks, Michael Bevis, Eric Kendrick, Todd Ericksen, Jonathan Avery, Robert Smalley, Sergio R. Cimbaro, Luis E. Lenzano, Jorge Barón, Juan Carlos Báez, Arturo Echalar
Coseismic slip and early afterslip of the M6.0 August 24, 2014 South Napa, California, earthquake
We employ strong motion seismograms and static offsets from the Global Positioning System, Interferometric Synthetic Aperture Radar, and other measurements in order to derive a coseismic slip and afterslip model of the M6.0 24 August 2014 South Napa earthquake. This earthquake ruptured an ∼13‐km‐long portion of the West Napa fault with predominantly right‐lateral strike slip. In the kinematic seis
Authors
Fred Pollitz, Jessica R. Murray, Sarah E. Minson, Charles W. Wicks, Jerry L. Svarc, Benjamin A. Brooks
Preliminary report on engineering and geological effects of the July 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake sequence included a foreshock event on July 4 2019 (M6.4) and a M7.1 mainshock event on July 5 2019. These events occurred in the Eastern California Shear Zone, near Indian Wells Valley, south of China Lake and west of Searles Valley. GEER has partnered with several organizations to collect perishable data and document the important impacts of these events, including the
Authors
Scott J Brandenberg, Pengfei Wang, Chukwuebuka C Nweke, Kenneth Hudson, Silvia Mazzoni, Yousef Bozorgnia, Kenneth W. Hudnut, Craig A. Davis, Sean K Ahdi, Farzin Zareian, Jawad Fayaz, Richard D Koehler, Colin Chupik, Ian Pierce, Alana Williams, Sinan Akciz, Martin B Hudson, Tadahiro Kishida, Benjamin A. Brooks, Ryan D. Gold, Daniel J. Ponti, Katherine Scharer, Devin McPhillips, Christopher DuRoss, Todd Ericksen, Janis Hernandez, Jay Patton, Brian Olson, Timothy E. Dawson, Jerome Treiman, Kelly Blake, Jeffrey Buchhuber, Chris L M Madugo, Joseph Sun, Andrea Donnellan, Greg Lyzenga, Erik Conway
Research to improve ShakeAlert earthquake early warning products and their utility
Earthquake early warning (EEW) is the rapid detection of an earthquake and issuance of an alert or notification to people and vulnerable systems likely to experience potentially damaging ground shaking. The level of ground shaking that is considered damaging is defined by the specific application; for example, manufacturing equipment may experience damage at a lower intensity ground shaking than w
Authors
Elizabeth S. Cochran, Brad T. Aagaard, Richard M. Allen, Jennifer Andrews, Annemarie S. Baltay, Andrew J. Barbour, Paul Bodin, Benjamin A. Brooks, Angela Chung, Brendan W. Crowell, Doug Given, Thomas C. Hanks, J. Renate Hartog, Egill Hauksson, Thomas H. Heaton, Sara McBride, Men-Andrin Meier, Diego Melgar, Sarah E. Minson, Jessica R. Murray, Jennifer A. Strauss, Douglas Toomey
Leveraging geodetic data to reduce losses from earthquakes
Seismic hazard assessments that are based on a variety of data and the best available science, coupled with rapid synthesis of real-time information from continuous monitoring networks to guide post-earthquake response, form a solid foundation for effective earthquake loss reduction. With this in mind, the Earthquake Hazards Program (EHP) of the U.S. Geological Survey (USGS) Natural Hazards Missio
Authors
Jessica R. Murray, Evelyn A. Roeloffs, Benjamin A. Brooks, John O. Langbein, William S. Leith, Sarah E. Minson, Jerry L. Svarc, Wayne R. Thatcher
Science and Products
- Science
External Grants - Overview
The U.S. Geological Survey (USGS) provides support for research that will assist in achieving the goals of the Earthquake Hazards Program. The goal is to mitigate earthquake losses that can occur in many parts of the nation by providing earth science data and assessments essential for land-use planning, engineering design, and emergency preparedness decisions. - Data
High-resolution seismic imaging data acquired in 2021 across a trace of the San Andreas Fault at Mee Ranch, Monterey County, California
In April of 2021, the U.S. Geological Survey conducted a high-resolution seismic survey at Mee Ranch in Monterey County, California. Both passive- and active-source seismic data were acquired using DTCC SmartSolo 3-component nodal seismograph systems ("nodes"), which continuously recorded data at rates up to 2000 samples per second. For passive-source acquisition, a 6x5 grid of nodes was deployed - Publications
Filter Total Items: 23
Commentary: The role of geodetic algorithms for earthquake early warning in Cascadia
The ShakeAlert earthquake early warning (EEW) system issues public alerts in California and will soon extend to Oregon and Washington. The Cascadia subduction zone presents significant new challenges and opportunities for EEW. Initial publications suggested that EEW algorithms based on Global Navigation Satellite System (GNSS) data could provide improved warning for intraslab events and dramaticalAuthorsJeffrey McGuire, Sarah E. Minson, Jessica R. Murray, Benjamin A. BrooksDocumentation of Surface Fault Rupture and Ground‐Deformation Features Produced by the 4 and 5 July 2019 Mw 6.4 and Mw 7.1 Ridgecrest Earthquake Sequence
The MwMw 6.4 and MwMw 7.1 Ridgecrest earthquake sequence occurred on 4 and 5 July 2019 within the eastern California shear zone of southern California. Both events produced extensive surface faulting and ground deformation within Indian Wells Valley and Searles Valley. In the weeks following the earthquakes, more than six dozen scientists from government, academia, and the private sector carefullyAuthorsDaniel J. Ponti, James Luke Blair, Rosa Carla M, Kate Thomas, Alexandra Pickering, Sinan Akciz, Stephen J. Angster, Jean-Philipe Avouac, Jeffrey Bachhuber, Steven Bacon, Nicolas C. Barth, S. Bennett, Kelly Blake, Stephan Bork, Benjamin A. Brooks, Thomas Bullard, Paul A. Burgess, Colin Chupik, Timothy E. Dawson, Michael DeFrisco, Jaime E. Delano, Stephen B. DeLong, James D. Dolan, Andrea Donnellan, Christopher DuRoss, Todd Ericksen, Erik Frost, Gareth J. Funning, Ryan D. Gold, Nicholas A Graehl, Carlos Gutierrez, Elizabeth Haddon, Alexandra Elise Hatem, John Helms, Janis Hernandez, Christopher S. Hitchcock, Peter Holland, Kenneth W. Hudnut, Katherine J. Kendrick, Richard D Koehler, Ozgur Kozaci, Tyler C. Ladinsky, Robert Leeper, Christopher Madugo, Maxime Mareschal, James McDonald, Devin McPhillips, Christopher Milliner, Daniel Mongovin, Alexander Morelan, Stephanie Nale, Johanna Nevitt, Matt O'Neal, Brian J. Olsen, Michael Oskin, Salena Padilla, Jason Patton, Belle E. Philibosian, Ian Pierce, Cynthia Pridmore, Nathaniel Roth, David Sandwell, Katherine Scharer, Gordon G. Seitz, Drake Singleton, Bridget Smith-Konter, Eleanor Spangler, Brian J. Swanson, Jessica Thompson Jobe, Jerome Treiman, Francesca Valencia, Joshua Vanderwal, Alana Williams, Xiaohua Xu, Judith Zachariasen, Jade Zimmerman, Robert ZinkeKinematics of fault slip associated with the July 4-6 2019 Ridgecrest, Californai earthquakes sequence
The 2019 Ridgecrest, California, earthquake sequence produced observable crustal deformation over much of central and southern California, as well as surface rupture over several tens of kilometers. To obtain a detailed picture of the fault slip involved in the 4 July M 6.4 foreshock and 6 July M 7.1 mainshock, we combine strong‐motion seismic waveforms with crustal deformation observations to obtAuthorsFred Pollitz, Jessica R. Murray, Jerry L. Svarc, Charles Wicks, Evelyn Roeloffs, Sarah E. Minson, Katherine Scharer, Katherine J. Kendrick, Kenneth W. Hudnut, Johanna Nevitt, Benjamin A. Brooks, David MencinEERI earthquake reconnaissance report: 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake Sequence began the morning of 4 July 2019 with an M6.4 earthquake at 10:33 a.m., closely following several small foreshocks. The epicenter of this event was roughly 11 miles (18 km) east-northeast of Ridgecrest (Figure 1) within the Naval Air Weapons Station China Lake (NAWS-CL). Seismic and geologic data established that the M6.4 earthquake occurred primarily along a steAuthorsEERI Learning from Earthquakes Program, Katherine ScharerSurface displacement distributions for the July 2019 Ridgecrest, California earthquake ruptures
Surface rupture in the 2019 Ridgecrest, California, earthquake sequence occurred along two orthogonal cross faults and includes dominantly left‐lateral and northeast‐striking rupture in the Mw 6.4 foreshock and dominantly right‐lateral and northwest‐striking rupture in the Mw 7.1 mainshock. We present >650 field‐based, surface‐displacement observations for these ruptures and synthesize our resultsAuthorsChristopher DuRoss, Ryan D. Gold, Timothy E. Dawson, Katherine Scharer, Katherine J. Kendrick, Sinan Akciz, Stephen J. Angster, Jeffery Bachhuber, Steven Bacon, Scott E. K. Bennett, Luke Blair, Benjamin A. Brooks, Thomas Bullard, W. Paul Burgess, Colin Chupik, Michael DeFrisco, Jaime Delano, James D. Dolan, Erik Frost, Nick Graehl, Elizabeth Haddon, Alexandra Elise Hatem, Janis Hernandez, Christopher S. Hitchcock, Kennth Hudnut, Jessica Thompson Jobe, Richard D Koehler, Ozgur Kozaci, Tyler C. Ladinsky, Christopher Madugo, Devin McPhillips, Christopher Milliner, Alexander Morelan, Brian Olson, Jason Patton, Belle E. Philibosian, Alexandra J. Pickering, Ian Pierce, Daniel J. Ponti, Gordon G. Seitz, Eleanor Spangler, Brian J. Swanson, Kate Thomas, Jerome Treiman, Francesca Valencia, Alana Williams, Robert ZinkeAirborne lidar and electro-optical imagery along surface ruptures of the 2019 Ridgecrest earthquake sequence, Southern California
Surface rupture from the 2019 Ridgecrest earthquake sequence, initially associated with the M 6.4 foreshock, occurred on July 4 on a ~17 km long, northeast-southwest oriented, left-lateral zone of faulting. Following the M 7.1 mainshock on July 5 (local time), extensive northwest-southeast-oriented, right-lateral faulting was then also mapped along a ~50 km long zone of faults, including sub-paralAuthorsKenneth W. Hudnut, Benjamin A. Brooks, Katherine M. Scharer, Janis L. Hernandez, Timothy E. Dawson, Michael E. Oskin, J. Ramon Arrowsmith, Christine A. Goulet, Kelly Blake, Matthew A. Boggie, Stephan Bork, Craig L. Glennie, J.C. Fernandez-Diaz, Abhinav Singhania, Darren Hauser, Sven SorhusMechanics of near-field deformation during co- and post-seismic shallow fault slip
Poor knowledge of how faults slip and distribute deformation in the shallow crust hinders efforts to mitigate hazards where faults increasingly intersect with the expanding global population at Earth’s surface. Here we analyze two study sites along the 2014 M 6.0 South Napa, California, earthquake rupture, each dominated by either co- or post-seismic shallow fault slip. We combine mobile laser scaAuthorsJohanna Nevitt, Benjamin A. Brooks, Rufus D. Catchings, Mark Goldman, Todd Ericksen, Craig L. GlennieIlluminating subduction zone rheological properties in the wake of a giant earthquake
Deformation associated with plate convergence at subduction zones is accommodated by a complex system involving fault slip and viscoelastic flow. These processes have proven difficult to disentangle. The 2010 Mw 8.8 Maule earthquake occurred close to the Chilean coast within a dense network of continuously recording Global Positioning System stations, which provide a comprehensive history of surfaAuthorsJonathan Weiss, Qiang Qiu, Sylvain Barbot, Tim J. Wright, James H. Foster, Alexander Saunders, Benjamin A. Brooks, Michael Bevis, Eric Kendrick, Todd Ericksen, Jonathan Avery, Robert Smalley, Sergio R. Cimbaro, Luis E. Lenzano, Jorge Barón, Juan Carlos Báez, Arturo EchalarCoseismic slip and early afterslip of the M6.0 August 24, 2014 South Napa, California, earthquake
We employ strong motion seismograms and static offsets from the Global Positioning System, Interferometric Synthetic Aperture Radar, and other measurements in order to derive a coseismic slip and afterslip model of the M6.0 24 August 2014 South Napa earthquake. This earthquake ruptured an ∼13‐km‐long portion of the West Napa fault with predominantly right‐lateral strike slip. In the kinematic seisAuthorsFred Pollitz, Jessica R. Murray, Sarah E. Minson, Charles W. Wicks, Jerry L. Svarc, Benjamin A. BrooksPreliminary report on engineering and geological effects of the July 2019 Ridgecrest earthquake sequence
The Ridgecrest Earthquake sequence included a foreshock event on July 4 2019 (M6.4) and a M7.1 mainshock event on July 5 2019. These events occurred in the Eastern California Shear Zone, near Indian Wells Valley, south of China Lake and west of Searles Valley. GEER has partnered with several organizations to collect perishable data and document the important impacts of these events, including theAuthorsScott J Brandenberg, Pengfei Wang, Chukwuebuka C Nweke, Kenneth Hudson, Silvia Mazzoni, Yousef Bozorgnia, Kenneth W. Hudnut, Craig A. Davis, Sean K Ahdi, Farzin Zareian, Jawad Fayaz, Richard D Koehler, Colin Chupik, Ian Pierce, Alana Williams, Sinan Akciz, Martin B Hudson, Tadahiro Kishida, Benjamin A. Brooks, Ryan D. Gold, Daniel J. Ponti, Katherine Scharer, Devin McPhillips, Christopher DuRoss, Todd Ericksen, Janis Hernandez, Jay Patton, Brian Olson, Timothy E. Dawson, Jerome Treiman, Kelly Blake, Jeffrey Buchhuber, Chris L M Madugo, Joseph Sun, Andrea Donnellan, Greg Lyzenga, Erik ConwayResearch to improve ShakeAlert earthquake early warning products and their utility
Earthquake early warning (EEW) is the rapid detection of an earthquake and issuance of an alert or notification to people and vulnerable systems likely to experience potentially damaging ground shaking. The level of ground shaking that is considered damaging is defined by the specific application; for example, manufacturing equipment may experience damage at a lower intensity ground shaking than wAuthorsElizabeth S. Cochran, Brad T. Aagaard, Richard M. Allen, Jennifer Andrews, Annemarie S. Baltay, Andrew J. Barbour, Paul Bodin, Benjamin A. Brooks, Angela Chung, Brendan W. Crowell, Doug Given, Thomas C. Hanks, J. Renate Hartog, Egill Hauksson, Thomas H. Heaton, Sara McBride, Men-Andrin Meier, Diego Melgar, Sarah E. Minson, Jessica R. Murray, Jennifer A. Strauss, Douglas ToomeyLeveraging geodetic data to reduce losses from earthquakes
Seismic hazard assessments that are based on a variety of data and the best available science, coupled with rapid synthesis of real-time information from continuous monitoring networks to guide post-earthquake response, form a solid foundation for effective earthquake loss reduction. With this in mind, the Earthquake Hazards Program (EHP) of the U.S. Geological Survey (USGS) Natural Hazards MissioAuthorsJessica R. Murray, Evelyn A. Roeloffs, Benjamin A. Brooks, John O. Langbein, William S. Leith, Sarah E. Minson, Jerry L. Svarc, Wayne R. Thatcher - News