Skip to main content
U.S. flag

An official website of the United States government

Artificial intelligence and avian influenza: Using machine learning to enhance active surveillance for avian influenza viruses

August 3, 2019

Influenza A viruses are one of the most significant viral groups globally with substantial impacts on human, domestic animal and wildlife health. Wild birds are the natural reservoirs for these viruses, and active surveillance within wild bird populations provides critical information about viral evolution forming the basis of risk assessments and countermeasure development. Unfortunately, active surveillance programs are often resource‐intensive, and thus, enhancing programs for increased efficiency is paramount. Machine learning, a branch of artificial intelligence applications, provides statistical learning procedures that can be used to gain novel insights into disease surveillance systems. We use a form of machine learning, gradient boosted trees, to estimate the probability of isolating avian influenza viruses (AIV) from wild bird samples collected during surveillance for AIVs from 2006 to 2011 in the United States. We examined several predictive features including age, sex, bird type, geographic location and matrix gene rRT‐PCR results. Our final model had high predictive power and only included geographic location and rRT‐PCR results as important predictors. The highest predicted viral isolation probability was for samples collected from the north‐central states and the south‐eastern region of Alaska. Lower rRT‐PCR Ct‐values are associated with increased likelihood of AIV isolation, and the model estimated 16% probability of isolating AIV from samples declared negative (i.e., ≥35 Ct‐value) using the rRT‐PCR screening test and standard protocols. Our model can be used to prioritize previously collected samples for isolation and rapidly evaluate AIV surveillance designs to maximize the probability of viral isolation given limited resources and laboratory capacity.

Citation Information

Publication Year 2019
Title Artificial intelligence and avian influenza: Using machine learning to enhance active surveillance for avian influenza viruses
DOI 10.1111/tbed.13318
Authors Daniel P. Walsh, Ting Fung Ma, Hon S. Ip, Jun Zhu
Publication Type Article
Publication Subtype Journal Article
Series Title Transboundary and Emerging Diseases
Series Number
Index ID 70206467
Record Source USGS Publications Warehouse
USGS Organization National Wildlife Health Center