Assessment of groundwater/surface-water interaction and simulation of potential streamflow depletion induced by groundwater withdrawal, Uinta River near Roosevelt, Utah
Roosevelt City, Utah, asserts a need for an additional supply of water to meet municipal demands and has identified a potential location for additional groundwater development at the Sprouse well field near the West Channel of the Uinta River. Groundwater is commonly hydraulically linked to surface water and, under some conditions, the pumpage of groundwater can deplete water in streams and other water bodies. In 2008, the U.S. Geological Survey, in cooperation with Roosevelt City, the Utah Department of Natural Resources, and the Ute Indian Tribe, began a study to improve understanding of the local interconnection between groundwater and surface water and to assess the potential for streamflow depletion from future groundwater withdrawals at a potential Roosevelt City development location—the Sprouse well field near the West Channel of the Uinta River.
In the study, streamflow gains and losses at the river/aquifer boundary near the well field and changes in those conditions over time were assessed through (1) synoptic measurement of discharge in the stream at multiple sites using tracer-dilution methods, (2) periodic measurement of the vertical hydraulic gradient across the streambed, and (3) continuous measurement of stream and streambed water temperature using heat as a tracer of flow across the streambed. Although some contradictions among the results of the three assessment methods were observed, results of the approaches generally indicated (1) losing streamflow conditions on the West Channel of the Uinta River north of and upstream from the Sprouse well field within the study area, (2) gaining streamflow conditions south of and downstream from the well field, and (3) some seasonal changes in those conditions that correspond with seasonal changes in stream stage and local water-table altitudes.
A numerical groundwater flow model was developed on the basis of previously reported observations and observations made during this study, and was used to estimate potential streamflow depletion that might result from future groundwater withdrawals at the Sprouse well field. The model incorporates concepts of transient groundwater flow conditions including fluctuations in groundwater levels and storage, and the distribution of and temporal variations in gains to and losses from streamflow in the West Channel of the Uinta River near the Sprouse well field. Two predictive model simulations incorporated additional future discharge from the Sprouse well field totaling 325 acre-feet annually and biennially during summer months. Results of the predictive model simulations indicate that the water withdrawn by the additional pumping was derived initially from aquifer storage and then, with time, predominantly from streamflow depletion. By the 10th year of the predictive simulation incorporating annual summer pumping from an additional public-supply well in the Sprouse well field, the simulation results indicate that 89 percent of a future annual 325 acre-feet of discharge is derived from depletion of streamflow in the West Channel of the Uinta River. A similar result was observed in a predictive model simulating the same discharge rate but with the new well being pumped every other year.
Citation Information
Publication Year | 2011 |
---|---|
Title | Assessment of groundwater/surface-water interaction and simulation of potential streamflow depletion induced by groundwater withdrawal, Uinta River near Roosevelt, Utah |
DOI | 10.3133/sir20115044 |
Authors | P. M. Lambert, T. Marston, B. A. Kimball, Bernard J. Stolp |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2011-5044 |
Index ID | sir20115044 |
Record Source | USGS Publications Warehouse |
USGS Organization | Utah Water Science Center |