Skip to main content
U.S. flag

An official website of the United States government

Bathymetric and velocimetric surveys at highway bridges crossing the Missouri and Mississippi Rivers near St. Louis, Missouri, May 23–27, 2016

September 26, 2017

Bathymetric and velocimetric data were collected by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, near 13 bridges at 8 highway crossings of the Missouri and Mississippi Rivers in the greater St. Louis, Missouri, area from May 23 to 27, 2016. A multibeam echosounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,640 to 1,970 feet longitudinally and extending laterally across the active channel from bank to bank during low to moderate flood flow conditions. These bathymetric surveys indicate the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be useful to the Missouri Department of Transportation as a low to moderate flood flow comparison to help assess the bridges for stability and integrity issues with respect to bridge scour during floods.

Bathymetric data were collected around every pier that was in water, except those at the edge of water, and scour holes were observed at most surveyed piers. The observed scour holes at the surveyed bridges were examined with respect to shape and depth.

The frontal slope values determined for scour holes observed in the current (2016) study generally are similar to recommended values in the literature and to values determined for scour holes in previous bathymetric surveys. Several of the structures had piers that were skewed to primary approach flow, as indicated by the scour hole being longer on the side of the pier with impinging flow, and some amount of deposition on the leeward side, as typically has been observed at piers skewed to approach flow; however, at most skewed piers in the current (2016) study, the scour hole was deeper on the leeward side of the pier. At most of these piers, the angled approach flow was the result of a deflection or contraction of flow caused by a spur dike near the pier, which may affect flow differently than for a simple skew. At structure A6500 (site 33), the wide face of the pier footing and seal course would behave as a complex foundation, for which scour is computed differently.

Previous bathymetric surveys exist for all the sites examined in this study. A previous survey in October 2010 at most of the sites had similar flow conditions and similar results to the 2016 surveys. A survey during flood conditions in August 2011 at the sites on the Missouri River and in May 2009 at structures A4936 and A1850 (site 35) on the Mississippi River did not always indicate more substantial scour during flood conditions. At structure A6500 (site 33) on the Mississippi River, a previous survey in 2009 was part of a habitat assessment before construction of the bridge and provides unique insight into the effects of the construction of that bridge on the channel in this reach. Substantial scour was observed near the right pier, and the riprap blanket surrounding the left pier seems to limit scour near that pier. Multiple additional surveys have been completed at structures A4936 and A1850 (site 35) on the Mississippi River, and the results of these surveys also are presented.

Publication Year 2017
Title Bathymetric and velocimetric surveys at highway bridges crossing the Missouri and Mississippi Rivers near St. Louis, Missouri, May 23–27, 2016
DOI 10.3133/sir20175076
Authors Richard J. Huizinga
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2017-5076
Index ID sir20175076
Record Source USGS Publications Warehouse
USGS Organization Missouri Water Science Center