Skip to main content
U.S. flag

An official website of the United States government

Biocrust science and global change

July 15, 2019

Global environmental changes such as climate and land‐use change affect ecosystems worldwide, and this New Phytologist Virtual Issue brings together fundamental research questions and novel approaches associated with the study of biological soil crusts in the context of such shifts. In a changing world, organisms can display a limited set of responses that will determine their persistence over varied spatial and temporal scales. Specifically, organisms might tolerate the change – for example, via phenotypic plasticity – and remain present in local communities. Alternatively, organisms might shift or retract their range to match their historical niche, they may adapt to the directional selection pressures imposed by change, or they could be driven to local (and possibly global) extinction. Efforts to understand which of these responses particular plant species or assemblages will exhibit are necessary for predicting changes in ecosystem functioning and trophic interactions under global change scenarios, and for managing and supporting sustainable terrestrial ecosystems. Accordingly, the assessment of plant responses to global change has become a significant research focus. Despite this impressive effort, our understanding and combined work to measure the responses to global change for species and communities of nonvascular autotrophs, such as the cyanobacteria, lichens, and bryophytes that form biological soil crusts (Fig. 1), remain rare compared with the large focus on vascular plants (Fig. 2; Reed et al., 2016). Nevertheless, these nonvascular photosynthetic communities and their responses to change could have critical implications for determining ecosystem structure and function at the global‐scale (Elbert et al., 2012; Ferrenberg et al., 2017; Rodriguez‐Caballero et al., 2018).

Citation Information

Publication Year 2019
Title Biocrust science and global change
DOI 10.1111/nph.15992
Authors Sasha C. Reed, Manuel Delgado-Baquerizo, Scott Ferrenberg
Publication Type Article
Publication Subtype Journal Article
Series Title New Phytologist
Series Number
Index ID 70204307
Record Source USGS Publications Warehouse
USGS Organization Southwest Biological Science Center