Skip to main content
U.S. flag

An official website of the United States government

Climate stability in Central Anatolia during the Messinian Salinity Crisis

April 13, 2018

Deposition of large amounts of evaporites and erosion of deep canyons within the Mediterranean Basin as a result of reduced basin connectivity with the Atlantic Ocean and the epicontinental Paratethys Sea characterized the Messinian Salinity Crisis (MSC, 5.97–5.33 Ma). The influence of the MSC on Mediterranean environmental conditions within the basin itself has been intensely studied from marine records, but reconstructing the impact of the MSC on circum-Mediterranean continental climate has been hampered by the absence of continuous sedimentary archives that span the duration of the event.

Here, we report results of a continental record of carbon (δ13C) and oxygen (δ18O) isotopes from lake carbonates framed by new magnetostratigraphic and 40Ar/39Ar dating, as well as by existing mammal stratigraphy (Kangal Basin, central Anatolia). The sampled section records continuous fluvio-lacustrine sedimentation from ~6.6 Ma to 4.9 Ma, which spans the MSC and the Miocene-Pliocene boundary. This dataset so far represents the only continuous continental paleoenvironmental record of the MSC in the circum-Mediterranean realm.

The Kangal Basin isotope record indicates a low degree of evaporation. Furthermore, covariance between δ13C and δ18O suggests a coupling between lake water balance and biologic productivity. Variations in δ13C and δ18O therefore likely reflect changes in the amount of incoming precipitation, rather than changes in δ18O values of incoming precipitation. The most prominent spike in δ13C and δ18O occurs during the acme of the MSC and is therefore interpreted to have resulted from a decrease in the amount of incoming moisture correlative to a period of vigorous erosion and sea level lowering in the Mediterranean Basin. Major sea level lowering of Mediterranean basin waters during the acme of the MSC could have therefore led to slightly dryer conditions over Anatolia, which is also suggested by modeling studies. Overall, changes in δ13C and δ18O values are small. Therefore, we surmise that the MSC had limited effects on the paleoenvironmental and paleoclimatic conditions in the Anatolian interior.

Publication Year 2018
Title Climate stability in Central Anatolia during the Messinian Salinity Crisis
DOI 10.1016/j.palaeo.2018.03.001
Authors Maud J.M. Meijers, Ahmet A Peynircioğlu, Michael A. Cosca, Gilles Y. Brocard, Donna L. Whitney, Cor G. Langereis, Andreas Mulch
Publication Type Article
Publication Subtype Journal Article
Series Title Palaeogeography, Palaeoclimatology, Palaeoecology
Index ID 70196530
Record Source USGS Publications Warehouse
USGS Organization Central Mineral and Environmental Resources Science Center