Skip to main content
U.S. flag

An official website of the United States government

Co-Cu-Au deposits in metasedimentary rocks-A preliminary report

September 30, 2010

A compilation of data on global Co-Cu-Au deposits in metasedimentary rocks refines previous descriptive models for their occurrence and provides important information for mineral resource assessments and exploration programs. This compilation forms the basis for a new classification of such deposits, which is speculative at this early stage of research. As defined herein, the Co-Cu-Au deposits contain 0.1 percent or more by weight of Co in ore or mineralized rock, comprising disseminated to semi-massive Co-bearing sulfide minerals with associated Fe- and Cu-bearing sulfides, and local gold, concentrated predominantly within rift-related, siliciclastic metasedimentary rocks of Proterozoic age. Some deposits have appreciable Ag ? Bi ? W ? Ni ? Y ? rare earth elements ? U. Deposit geometry includes stratabound and stratiform layers, lenses, and veins, and (or) discordant veins and breccias. The geometry of most deposits is controlled by stratigraphic layering, folds, axial-plane cleavage, shear zones, breccias, or faults. Ore minerals are mainly cobaltite, skutterudite, glaucodot, and chalcopyrite, with minor gold, arsenopyrite, pyrite, pyrrhotite, bismuthinite, and bismuth; some deposits have appreciable tetrahedrite, uraninite, monazite, allanite, xenotime, apatite, scheelite, or molybdenite. Magnetite can be abundant in breccias, veins, or stratabound lenses within ore or surrounding country rocks. Common gangue minerals include quartz, biotite, muscovite, K-feldspar, albite, chlorite, and scapolite; many deposits contain minor to major amounts of tourmaline. Altered wall rocks generally have abundant biotite or albite. Mesoproterozoic metasedimentary successions constitute the predominant geologic setting. Felsic and (or) mafic plutons are spatially associated with many deposits and at some localities may be contemporaneous with, and involved in, ore formation. Geoenvironmental data for the Blackbird mining district in central Idaho indicate that weathering of abundant Fe, S, As, Co, and Cu in sulfide minerals of the deposits produces acidic waters, especially in pyrite-rich deposits; mine runoff has high concentrations of Fe, Cu, and Mn that exceed U.S. drinking water or aquatic life standards.

Citation Information

Publication Year 2010
Title Co-Cu-Au deposits in metasedimentary rocks-A preliminary report
DOI 10.3133/ofr20101212
Authors J. F. Slack, J. D. Causey, R. G. Eppinger, J. E. Gray, C.A. Johnson, K.I. Lund, K. J. Schulz
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2010-1212
Index ID ofr20101212
Record Source USGS Publications Warehouse
USGS Organization U.S. Geological Survey