It is reasonably clear that disequilibrium or “far-from equilibrium” conditions lead to the formation of silica colloids and their deposition in many epithermal deposits. This implies ore-forming solutions had elevated concentrations of dissolved silica, well in excess of amorphous silica saturation. We have previously demonstrated that such colloidal silica particles were deposited in epithermal veins as silica gels and opal, which may later progress along a path to crystallize into more thermodynamically favored (less-soluble) silica phases such as quartz and chalcedony. Also, in some deposits, amorphous silica is co-deposited with precious-metal minerals, such as electrum in the banded super-bonanza ores of the Sleeper deposit (NV). Ore-mineral textures from some western USA bonanza epithermal ores indicate that two precious-metal phases (electrum and naumannite, Ag2Se) form colloidal particles that are transported by ore-forming fluids and are deposited either by aggregation (by sticking to other precious metal-particles) to make dendrites, or are deposited on the “lee” side of protrusion along vein walls (or perhaps by both processes). We can infer by analogy to silica that this also implies that ore-forming solutions contained elevated (supersaturated) dissolved concentrations of both gold and silver that formed colloidal particles under disequilibrium (often chaotic) conditions. Thus physical transport and deposition textures seem to indicate the presence of strongly precious-metal-enriched ore forming fluids, which led to (not surprisingly) the bonanza grades of these remarkable ores. What causes such a precious-metal-rich solution is debatable, but that is the subject of our continued investigations.