During water years 2013–18, the U.S. Geological Survey National Water-Quality Assessment Project sampled the National Water Quality Network for Rivers and Streams year-round and reported on 221 pesticides at 72 sites across the United States. Pesticides are difficult to measure, their concentrations often represent discrete snapshots in time, and capturing peak concentrations is expensive. Three types of regression models were developed to estimate concentrations for two selected pesticides at each of six National Water Quality Network for Rivers and Streams sites. The regression models used continuously measured streamflow and water-quality properties (differing combinations of pH, specific conductance, turbidity, and water temperature); discrete water-quality samples analyzed for atrazine, azoxystrobin, bentazon, bromacil, imidacloprid, simazine, and triclopyr; and time as an additional explanatory variable for seasonality.
The modeling approaches included (1) a standard regression that included surrogates (differing combinations of pH, specific conductance, turbidity, and water temperature) and periodic functions (sine-cosine) of pesticide application use as predictor variables; (2) the seasonal wave with flow adjustment model that included a seasonal component and flow anomalies but excluded surrogates; and (3) the seasonal wave with flow adjustment model that included a seasonal component, flow anomalies, and surrogates. Models were evaluated using three measures of model performance: generalized coefficient of determination (generalized R2), Akaike’s Information Criteria, and scale (the estimated standard deviation of the tobit regression error term). Because of low observation numbers, results from this study can be considered a pilot effort with the possibility that some models are overfit.
In all cases, estimated pesticide concentrations modeled with base SEAWAVE-Q were better than the standard surrogate regression models; all 39 generalized R2 values increased by 3–56 percent (median of 25 percent) when compared to the standard surrogate regression models, and all Akaike’s Information Criteria and scale values decreased. The addition of surrogate variables such as pH, specific conductance, turbidity, and water temperature to the base SEAWAVE-Q model to improve estimates of pesticide concentrations resulted in only modest improvements; generalized R2 values increased by only 0–10 percent (median of 3 percent). In some instances, combinations of the surrogates produced more appreciative improvements in model results, but in those instances, we hypothesize that the surrogates correlated with some unknown measure that directly relates to pesticide transport.
Citation Information
Publication Year | 2023 |
---|---|
Title | Comparison of surrogate models to estimate pesticide concentrations at six U.S. Geological Survey National Water Quality Network sites during water years 2013–18 |
DOI | 10.3133/sir20225109 |
Authors | S. Alex. Covert, Aubrey R. Bunch, Charles G. Crawford, Gretchen P. Oelsner |
Publication Type | Report |
Publication Subtype | USGS Numbered Series |
Series Title | Scientific Investigations Report |
Series Number | 2022-5109 |
Index ID | sir20225109 |
Record Source | USGS Publications Warehouse |
USGS Organization | Ohio-Kentucky-Indiana Water Science Center |
Related Content
Datasets for Comparison of Surrogate Models to Estimate Pesticide Concentrations at Six U.S. Geological Survey National Water Quality Network Sites During Water Years 2013–2018
Related Content
- Data
Datasets for Comparison of Surrogate Models to Estimate Pesticide Concentrations at Six U.S. Geological Survey National Water Quality Network Sites During Water Years 2013–2018
This data release is comprised of data tables of input variables for seawaveQ and surrogate models used to predict concentrations of select pesticides at six U.S. Geological Survey National Water Quality Network (NWQN) river sites (Fanno Creek at Durham, Oregon; White River at Hazleton, Indiana; Kansas River at DeSoto, Kansas; Little Arkansas River near Sedgwick, Kansas; Missouri River at Hermann, - Connect