Skip to main content
U.S. flag

An official website of the United States government

Complementary models of tree species-soil relationships in old-growth temperate forests

July 12, 2011

Ecosystem-level studies identify plant–soil feedbacks as important controls on soil nutrient availability, particularly for nitrogen and phosphorus. Although site- and species-specific studies of tree species–soil relationships are relatively common, comparatively fewer studies consider multiple co-existing species in old-growth forests across a range of sites that vary in underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species–soil relationships. Plant–soil feedbacks that could reinforce site-level differences in nutrient availability were assessed using the context-dependent relationships model, whereby relative species-based differences in each soil nutrient diverged or converged as nutrient status changed across sites. Tree species–soil relationships that did not reflect strong feedbacks were evaluated using a site-independent relationships model, whereby forest floor and surface mineral soil nutrient pools differed consistently by tree species across sites, without variation in deeper mineral soils. We found that the organically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most often followed a divergence model, whereby species differences were greatest at high-nutrient sites. These patterns are consistent with theory emphasizing biotic control of these elements through plant–soil feedback mechanisms. Site-independent species differences were strongest for pools of the weatherable cations calcium, magnesium, potassium, as well as phosphorus, in mineral soils. Site-independent species differences in forest floor nutrients were attributable to one species that displayed significantly greater forest floor mass accumulation. Our findings confirm that site-independent and context-dependent tree species-soil relationships occur simultaneously in old-growth temperate forests, with context-dependent relationships strongest for organically cycled elements, and site-independent relationships strongest for weatherable elements with inorganic cycling phases. These models provide complementary explanations for patterns of nutrient accumulation and cycling in mixed-species old-growth temperate forests.

Citation Information

Publication Year 2011
Title Complementary models of tree species-soil relationships in old-growth temperate forests
DOI 10.1007/s10021-010-9407-5
Authors Alison Cross, Steven S. Perakis
Publication Type Article
Publication Subtype Journal Article
Series Title Ecosystems
Series Number
Index ID 70004657
Record Source USGS Publications Warehouse
USGS Organization Forest and Rangeland Ecosystem Science Center