Skip to main content
U.S. flag

An official website of the United States government

Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status

June 19, 2015

MAHLI (Mars Hand Lens Imager) is a 2-megapixel, Bayer pattern color CCD camera with a macro lens mounted on a rotatable turret at the end of the 2-meters-long robotic arm aboard the Mars Science Laboratory rover, Curiosity. The camera includes white and longwave ultraviolet LEDs to illuminate targets at night. Onboard data processing services include focus stack merging and data compression. Here we report on the results and status of MAHLI characterization and calibration, covering the pre-launch period from August 2008 through the early months of the extended surface mission through February 2015. Since landing in Gale crater in August 2012, MAHLI has been used for a wide range of science and engineering applications, including distinction among a variety of mafic, siliciclastic sedimentary rocks; investigation of grain-scale rock, regolith, and eolian sediment textures and structures; imaging of the landscape; inspection and monitoring of rover and science instrument hardware concerns; and supporting geologic sample selection, extraction, analysis, delivery, and documentation. The camera has a dust cover and focus mechanism actuated by a single stepper motor. The transparent cover was coated with a thin film of dust during landing, thus MAHLI is usually operated with the cover open. The camera focuses over a range from a working distance of 2.04 cm to infinity; the highest resolution images are at 13.9 µm per pixel; images acquired from 6.9 cm show features at the same scale as the Mars Exploration Rover Microscopic Imagers at 31 µm/pixel; and 100 µm/pixel is achieved at a working distance of ~26.5 cm. The very highest resolution images returned from Mars permit distinction of high contrast silt grains in the 30–40 µm size range. MAHLI has performed well; the images need no calibration in order to achieve most of the investigation’s science and engineering goals. The positioning and repeatability of robotic arm placement of the MAHLI camera head have been excellent on Mars, often with the hardware arriving within millimeters of expectation. Stability while imaging is usually such that the images are sharply focused; some exceptions—thought to result from motion induced by wind—have occurred during longer exposure LED-illuminated night imaging. Image calibration includes relative radiometric correction by removal of dark current and application of a flat field. Dark current is negligible to minor for typical daytime exposure durations and temperatures at the Gale field site. A pre-launch flat field product is usually applied to the data but new products created from images acquired by MAHLI of the Martian sky are superior and can provide a relative radiometric accuracy of ~6%. The camera lens imparts negligible distortion to its images; camera models derived from pre-launch data, with CAHV and CAHVOR parameters captured in their archived labels, can be applied to the images for analysis. MAHLI data and derived products, including pre-launch images, are archived with the NASA Planetary Data System (PDS). This report includes supplementary calibration and characterization data that are not available in the PDS archive (see supplement file

Citation Information

Publication Year 2015
Title Curiosity’s robotic arm-mounted Mars Hand Lens Imager (MAHLI): Characterization and calibration status
DOI 10.13140/RG.2.1.3798.5447
Authors Kenneth S. Edgett, Michael A. Caplinger, Justin N. Maki, Michael A. Ravine, F. Tony Ghaemi, Sean McNair, Kenneth E. Herkenhoff, Brian M. Duston, Reg G. Wilson, R. Aileen Yingst, Megan R. Kennedy, Michelle E. Minitti, Aaron J. Sengstacken, Kimberley D. Supulver, Leslie J. Lipkaman, Gillian M. Krezoski, Marie J. McBride, Tessa L. Jones, Brian E. Nixon, Jason K. Van Beek, Daniel J. Krysak, Randolph L. Kirk
Publication Type Report
Publication Subtype Other Report
Series Title MSL MAHLI Technical Report
Series Number 0001
Index ID 70168950
Record Source USGS Publications Warehouse
USGS Organization Astrogeology Science Center