Functional and geographic components of risk for climate sensitive vertebrates in the Pacific Northwest, USA
Rarity and life history traits inform multiple dimensions of intrinsic risk to climate and environmental change and can help systematically identify at-risk species. We quantified relative geographic rarity (area of occupancy), climate niche breadth, and life history traits for 114 freshwater fishes, amphibians, and reptiles in the U.S. Pacific Northwest. Our approach leveraged presence-only, publicly available data and traits-based inference to evaluate area of occupancy, climate sensitivity (i.e., climate niche breadth), and a Rarity and Climate Sensitivity
(RCS) index of all species across multiple geographic extents, grain sizes, and data types. The RCS index was relatively stable across extents, grains, and data types, with climate sensitivity differentiating species with otherwise similar areas of occupancy. We also found that species with sensitivity-associated traits (e.g., long generation time, low fecundity) were not necessarily the same species identified as at-risk with geographical approaches (small range size, small climate niche breadth). Many multispecies assessments using coarse-scale data (e.g., entire range maps or convex-hull approaches) often focus on a single dimension of intrinsic risk;
others rely on data-intensive models only applicable to a few well-studied species. What remains is a need for an approach that enables multispecies, multidimensional assessment efforts. This is particularly true at regional scales, where management needs require assessments that are intermediate to coarse- and fine-scale approaches. We demonstrate that by considering multiple dimensions of intrinsic risk to climate change (range size, climate sensitivity, and traits), site-specific locality data may offer a pathway for ensuring vulnerable, understudied species do not go overlooked in conservation.
Citation Information
Publication Year | 2019 |
---|---|
Title | Functional and geographic components of risk for climate sensitive vertebrates in the Pacific Northwest, USA |
DOI | 10.1016/j.biocon.2018.10.012 |
Authors | Meryl Mims, Deanna H. Olson, David S. Pilliod, Jason B. Dunham |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Biological Conservation |
Index ID | 70204659 |
Record Source | USGS Publications Warehouse |
USGS Organization | Forest and Rangeland Ecosystem Science Center |