Skip to main content
U.S. flag

An official website of the United States government

Geologic framework, age, and lithologic characteristics of the North Park Formation in North Park, north-central Colorado

October 18, 2016

Deposits of the North Park Formation of late Oligocene and Miocene age are locally exposed at small, widely spaced outcrops along the margins of the roughly northwest-trending North Park syncline in the southern part of North Park, a large intermontane topographic basin in Jackson County in north-central Colorado. These outcrops suggest that rocks and sediments of the North Park Formation consist chiefly of poorly consolidated sand, weakly cemented sandstone, and pebbly sandstone; subordinate amounts of pebble conglomerate; minor amounts of cobbly pebble gravel, siltstone, and sandy limestone; and rare beds of cobble conglomerate and altered tuff. These deposits partly filled North Park as well as a few small nearby valleys and half grabens. In North Park, deposits of the North Park Formation probably once formed a broad and relatively thick sedimentary apron composed chiefly of alluvial slope deposits (mostly sheetwash and stream-channel alluvium) that extended, over a distance of at least 150 kilometers (km), northwestward from the Never Summer Mountains and northward from the Rabbit Ears Range across North Park and extended farther northwestward into the valley of the North Platte River slightly north of the Colorado-Wyoming border. The maximum preserved thickness of the formation in North Park is about 550 meters near the southeastern end of the North Park syncline.

The deposition of the North Park Formation was coeval in part with local volcanism, extensional faulting, development of half grabens, and deposition of the Browns Park Formation and Troublesome Formation and was accompanied by post-Laramide regional epeirogenic uplift. Regional deposition of extensive eolian sand sheets and loess deposits, coeval with the deposition of the North Park Formation, suggests that semiarid climatic conditions prevailed during the deposition of the North Park Formation during the late Oligocene and Miocene.

The North Park Formation locally contains a 28.1-mega-annum (Ma, million years ago) ash-flow tuff near its base at Owl Ridge and is interbedded with 29-Ma rhyodacite lava flows and volcanic breccia at Owl Mountain. The formation locally contains vertebrate fossils at least as young as Barstovian age (about 15.9–12.6 Ma) and overlies rocks as young as the White River Formation, which contains vertebrate fossils of Chadronian age (about 37–33.8 Ma) in North Park and a bed of 36.0-Ma volcanic ash in the upper part of the Laramie River valley about 30 km northeast of Walden, Colorado. Based on the ages of the vertebrate fossils, folding of the rocks and sediments in the North Park syncline may be much younger than about 16 Ma.

Bedding characteristics of the North Park Formation suggest that (1) some or much of the sand, sandstone, and pebbly sandstone may have been deposited as sheetwash alluvium; (2) much of the siltstone may have been deposited as sheetwash alluvium or ephemeral pond or marsh deposits; (3) beds of sandy limestone probably were deposited as ephemeral pond or marsh deposits; and (4) altered tuff probably was deposited in ephemeral ponds or marshes. Most of the conglomerate and gravel in the North Park Formation are stream-channel deposits that were deposited by high-energy ephemeral or intermittent streams that issued from volcanic terrain rather than debris-flow deposits in relatively near-source fan deposits dominated by sediment gravity flow. Laccolithic doming, uplift, and tilting in the Never Summer Mountains near the Mount Richthofen stock, as well as the formation of volcanic edifices in the Never Summer Mountains and the Rabbit Ears Range during the late Oligocene and Miocene, significantly steepened stream gradients and greatly increased the erosive power and transport capacity of streams that transported large rock fragments and finer sediment eroded from volcanic and sedimentary sources and deposited them in the North Park Formation.

Much of the material that makes up the rocks and sediments of the North Park Formation was derived from the erosion of volcanic, intrusive, and sedimentary rocks. Clasts in the North Park Formation were derived chiefly from the erosion of volcanic and intrusive igneous rocks of late Oligocene and Miocene age that range in composition from rhyolite to trachybasalt. These rocks are locally exposed along the west flank of the Never Summer Mountains, the north flank of the Rabbit Ears Range, and the east flank of the Park Range at and near Rabbit Ears Peak. The minor amount of igneous and metamorphic clasts of Proterozoic age in the North Park Formation are commonly composed of durable rock types that are resistant to both physical and chemical weathering. Many of these clasts may have been derived from the erosion of conglomerate and conglomeratic sandstone in the Coalmont Formation rather than from basement rocks currently at or near the ground surface in the Never Summer Mountains. Much of the sand and finer grained particles in the North Park Formation probably were derived from the erosion of sandstone, shale, and sandy claystone of the Coalmont Formation. Likewise, much of the abundant sand-sized quartz and feldspar in sand, sandstone, and pebbly sandstone of the North Park Formation probably was derived from the erosion of sandstone, conglomeratic sandstone, and conglomerate of the Coalmont Formation. Some of the fine sand, very fine sand, and silt in very fine grained sandstone and siltstone of the North Park Formation may be derived from the erosion of coeval eolian sand and loess in the Browns Park Formation that was transported across the Park Range by westerly or southwesterly winds.

Publication Year 2016
Title Geologic framework, age, and lithologic characteristics of the North Park Formation in North Park, north-central Colorado
DOI 10.3133/sir20165126
Authors Ralph R. Shroba
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2016-5126
Index ID sir20165126
Record Source USGS Publications Warehouse
USGS Organization Geosciences and Environmental Change Science Center