Skip to main content
U.S. flag

An official website of the United States government

Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities

September 2, 2011

Hurricanes Katrina and Rita made landfall in 2005, subjecting the coastal marsh communities of Louisiana to various degrees of exposure. We collected data after the storms at 30 sites within fresh (12), brackish/intermediate (12), and saline (6) marshes to document the effects of saltwater storm surge and sedimentation on marsh community dynamics. The 30 sites were comprised of 15 pairs. Most pairs contained one site where data collection occurred historically (that is, prestorms) and one Coastwide Reference Monitoring System site. Data were collected from spring 2006 to fall 2007 on vegetative species composition, percentage of vegetation cover, aboveground and belowground biomass, and canopy reflectance, along with discrete porewater salinity, hourly surface-water salinity, and water level. Where available, historical data acquired before Hurricanes Katrina and Rita were used to compare conditions and changes in ecological trajectories before and after the hurricanes. Sites experiencing direct and indirect hurricane influences (referred to in this report as levels of influence) were also identified, and the effects of hurricane influence were tested on vegetation and porewater data. Within fresh marshes, porewater salinity was greater in directly impacted areas, and this heightened salinity was reflected in decreased aboveground and belowground biomass and increased cover of disturbance species in the directly impacted sites. At the brackish/intermediate marsh sites, vegetation variables and porewater salinity were similar in directly and indirectly impacted areas, but porewater salinity was higher than expected throughout the study. Interestingly, directly impacted saline marsh sites had lower porewater salinity than indirectly impacted sites, but aboveground biomass was greater at the directly impacted sites. Because of the variable and site-specific nature of hurricane influences, we present case studies to help define postdisturbance baseline conditions in fresh, brackish/ intermediate, and saline marshes. In fresh marshes, the mechanism of hurricane influence varied across the landscape. In the western region, saltwater storm surge inundated freshwater marshes and remained for weeks, effectively causing damage that reset the vegetation community. This is in contrast to the direct physical disturbance of the storm surge in the eastern region, which flipped and relocated marsh mats, thereby stressing the vegetation communities and providing an opportunity for disturbance species to colonize. In the brackish/intermediate marsh, disturbance species took advantage of the opportunity provided by shifting species composition caused by physical and saltwater-induced perturbations, although this shift is likely to be short lived. Saline marsh sites were not negatively impacted to a severe degree by the hurricanes. Species composition of vegetation in saline marshes was not affected, and sediment deposition appeared to increase vegetative productivity. The coastal landscape of Louisiana is experiencing high rates of land loss resulting from natural and anthropogenic causes and is experiencing subsidence rates greater than 10.0 millimeters per year (mm yr-1); therefore, it is important to understand how hurricanes influence sedimentation and soil properties. We document long-term vertical accretion rates and accumulation rates of organic matter, bulk density, carbon and nitrogen. Analyses using caesium-137 to calculate long-term vertical accretion rates suggest that accretion under impounded conditions is less than in nonimpounded conditions in the brackish marsh of the chenier plain. Our data also support previous studies indicating that accumulation rates of organic matter explain much of the variability associated with vertical accretion in brackish/intermediate and saline marshes. In fresh marshes, more of the variability associated with vertical accretion was explained by mineral accumulation than in the other mars

Publication Year 2011
Title Geomorphic and ecological effects of Hurricanes Katrina and Rita on coastal Louisiana marsh communities
DOI 10.3133/ofr20111094
Authors Sarai C. Piazza, Gregory D. Steyer, Kari F. Cretini, Charles E. Sasser, Jenneke M. Visser, Guerry O. Holm, Leigh A. Sharp, D. Elaine Evers, John R. Meriwether
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2011-1094
Index ID ofr20111094
Record Source USGS Publications Warehouse
USGS Organization National Wetlands Research Center