Skip to main content
U.S. flag

An official website of the United States government

Geophysical data integration and conditional uncertainty analysis on hydraulic conductivity estimation

January 1, 2007

Integration of various geophysical data is essential to better understand aquifer heterogeneity. However, data integration is challenging because there are different levels of support between primary and secondary data needed to be correlated in various ways. This study proposes a geostatistical method to integrate the hydraulic conductivity measurements and electrical resistivity data to better estimate the hydraulic conductivity (K) distribution. The K measurements are obtained from the pumping tests and represent the primary data (hard data). The borehole electrical resistivity data from electrical logs are regarded as the secondary data (soft data). The electrical resistivity data is used to infer hydraulic conductivity values through the Archie law and Kozeny-Carman equation. A pseudo cross-semivariogram is developed to cope with the resistivity data non-collocation. Uncertainty in the auto-semivariograms and pseudo cross-semivariogram is quantified. The methodology is demonstrated by a real-world case study where the hydraulic conductivity is estimated in the Upper Chicot aquifer of Southwestern Louisiana. The groundwater responses by the cokriging and cosimulation of hydraulic conductivity are compared using analysis of variance (ANOVA). ?? 2007 ASCE.

Citation Information

Publication Year 2007
Title Geophysical data integration and conditional uncertainty analysis on hydraulic conductivity estimation
DOI 10.1061/40856(200)128
Authors A. Rahman, F.T.-C. Tsai, C.D. White, D.A. Carlson, C. S. Willson
Publication Type Conference Paper
Publication Subtype Conference Paper
Series Title
Series Number
Index ID 70034384
Record Source USGS Publications Warehouse
USGS Organization