Skip to main content
U.S. flag

An official website of the United States government

Groundwater flow model for Western Chippewa County–Including analysis of water resources related to industrial sand mining and irrigated agriculture

January 1, 2019

A groundwater flow model for western Chippewa County, Wisconsin, was developed by the Wisconsin Geological and Natural History Survey (WGNHS) and the U.S. Geological Survey (USGS) using the computer program MODFLOW. The model is the result of a five-year groundwater study commissioned by Chippewa County in 2012 to evaluate the effects of industrial sand mining and irrigated agriculture on the county’s water resources. The study incorporates existing data and newly acquired data from fieldwork conducted within the study area. The groundwater model may be useful for future investigations, such as evaluation of proposed high-capacity well sites, development of municipal wellhead protection plans, and studies that seek to further quantify surface water-groundwater relationships.

The model conceptualizes the hydrostratigraphy of western Chippewa County as six stacked layers. Each layer is distinct, beginning with unlithified glacial material at the surface, and alternating between sandstones (that act as aquifers) and shale units (that serve as aquitards). The model is bounded below by Precambrian crystalline bedrock and its perimeter was derived from a regional-scale groundwater flow model.

The MODFLOW model represented average conditions during 2011–2013 with “steady-state” assumptions, meaning that simulated water levels do not fluctuate seasonally or from year to year. Steady-state models simplify natural variability, making results of scenario simulations easier to interpret and compare while also maximizing effects of stressors because the simulated stress is always applied (not halted after a few months or years). Model calibration used the parameter estimation code (PEST), and calibration targets included heads (groundwater levels) and streamflows. Calibration focused on 2011–2013 because a large amount of head and streamflow data were available for that period.

The MODFLOW model explicitly simulates all sources and sinks of water, including groundwater/surface-water interaction with streamflow routing. Model input included estimates of aquifer hydraulic conductivity and a spatial groundwater recharge distribution developed using a GIS-based soil-water-balance (SWB) model applied to the model area. Groundwater withdrawals were simulated for 269 high-capacity wells across the entire model domain, which includes western Chippewa County and adjacent portions of Dunn, Barron, and Rusk Counties. Collectively, these wells withdrew about 1.14 million gallons per year between 2011 and 2013.

Once the model was calibrated, it was applied to two distinct scenarios of increased groundwater withdrawals: one evaluating hydrologic effects of more intensive industrial sand mining and the second evaluating the hydrologic effects of more intensive agricultural irrigation practices. Each scenario was developed with input from Chippewa County and a stakeholder group established expressly for this study. The scenarios were designed to represent reasonable future buildout conditions for both mining and irrigated agriculture. The mining scenario underscores the potential hydrologic effects related to changing land-use practices (i.e., hilltops and farmland becoming sand mines), while the irrigated agriculture scenario illustrates the potential hydrologic effects of intensifying existing land-use practices (i.e., installing new wells to irrigate farm fields).

While each scenario evaluated distinctly different conditions, modeling results demonstrated the potential of both scenarios to lower the water table and reduce baseflows in headwater streams within the modeled area. In the case of irrigated agriculture, hydrologic effects were associated directly with groundwater withdrawals. By assuming that irrigation did not decrease, this steady-state simulation represented a sustained future effect. By contrast, hydrologic effects of industrial sand mining were the result of both groundwater withdrawals at mines and land-use changes that effectively reduced recharge to groundwater over distinct phases of active mining. This scenario included a post-mining phase, during which groundwater withdrawals stopped and mined areas were reclaimed to undeveloped prairie grass cover. If reclamation to undeveloped prairie indeed occurs as simulated, long-term increases in the water table and stream baseflows are possible. In this sense, the scenario representing build out of irrigated agriculture led to long-term baseflow declines while the future buildout of industrial sand mining led to declines that dissipated following mine reclamation to undisturbed prairie.

Future investigations in similar hydrogeologic settings may find the following insights gleaned from this study useful:

❚❚ The characterization of hydrogeologic properties, delineation of hydrogeologic units, and calibration of groundwater flow models benefited from incorporation of accurate well construction reports, high-quality borehole geophysical logs, and streamflow gaging data.

❚❚ Infiltration testing performed in active mining areas provided evidence that reducing the degree and extent of compaction and enhancing areas designed to retain and infiltrate stormwater runoff could potentially reduce runoff and increase groundwater recharge.

❚❚ Similarly, reclaiming mined areas to prairie grasses would be expected to reduce runoff and increase groundwater recharge by reducing compaction and improving soil structure and vegetation that can slow runoff and enhance infiltration.

Publication Year 2019
Title Groundwater flow model for Western Chippewa County–Including analysis of water resources related to industrial sand mining and irrigated agriculture
Authors Michael Parsen, Paul F. Juckem, Madeline Gotkowitz, Michael N. Fienen
Publication Type Report
Publication Subtype State or Local Government Series
Series Title Wisconsin Geological and NaturalHistory Survey Bulletin
Series Number B112
Index ID 70203838
Record Source USGS Publications Warehouse
USGS Organization Upper Midwest Water Science Center