Skip to main content
U.S. flag

An official website of the United States government

Groundwater-storage change and land-surface elevation change in Tucson Basin and Avra Valley, south-central Arizona--2003-2016

November 29, 2018

The U.S. Geological Survey monitors groundwater-storage change and land-surface elevation change caused by groundwater withdrawal in Tucson Basin and Avra Valley—the two most populated alluvial basins within the Tucson Active Management Area. The Tucson Active Management Area is one of five active management areas in Arizona established by the 1980 Groundwater Management Act and governed by the Arizona Department of Water Resources. Gravity and land-surface elevation change were monitored every 1 to 3 years at wells and benchmarks in Tucson Basin and Avra Valley from 2003 to 2016. Monitoring resulted in estimates of land-surface elevation change and groundwater-storage change. Interferometric synthetic aperture radar (InSAR) interferograms showing land-surface elevation change were constructed for the Tucson metropolitan area from (1) May 2003 to July 2006, (2) July 2006 to June 2008, (3) June 2008 to April 2011, (4) April 2011 to November 2014, and (5) November 2014 to March 2016. For the Tucson metropolitan area, maximum subsidence of about 2 inches occurred during May 2003 to July 2006. From July 2006 to June 2008, maximum subsidence of approximately 0.8 inches occurred in two regions in the Tucson metropolitan area. From June 2008 to April 2011, about 0.8 inches of subsidence also occurred in two regions. Additionally, for the period April 2011 to November 2014, a maximum of about 0.9 inches of subsidence occurred in the same two regions of Tucson Basin. For the entire monitoring period from May 2003 to March 2016, maximum subsidence of as much as 5.3 inches occurred in the Tucson metropolitan area south of Irvington Road between south 12th Avenue and south Park Avenue, and as much as 4 inches in central Tucson south of Broadway between Country Club Road and Craycroft Road. The InSAR data indicated that there was no significant land-surface deformation from 2003 to 2016 in Avra Valley, and no change in either basin from 2014 to 2016.

The volume of stored groundwater in the monitored part of Tucson Basin showed net zero change from spring 2003 to summer 2006. From summer 2006 to summer 2008 the volume of stored groundwater in the monitored part of Tucson Basin increased approximately 50,000 acre-feet; however, overdraft conditions resumed from summer 2008 to spring 2011, resulting in decreased storage of approximately 178,000 acre-feet. From spring 2011 to fall 2014, the volume of stored groundwater in Tucson Basin decreased about 200,000 acre-feet, following a period of lower than average rainfall in 2012 and 2013. The volume of stored groundwater in the monitored part of Tucson Basin increased approximately 167,000 acre-feet from fall 2014 to spring 2016.

Groundwater storage in Avra Valley increased during the entire monitoring period from spring 2003 to spring 2016, largely as a result of managed recharge of Central Arizona Project water in the monitored region. From 2003 to 2016, artificial recharge in Avra Valley totaled approximately 1,788,000 acre-feet, and in Tucson Basin artificial recharge for the entire period was about 636,790 acre-feet. Artificial recharge exceeded pumping in Avra Valley for each time interval. Pumping in Tucson Basin exceeded artificial recharge for every period except 2014 to 2016. Overall, long-term water-level declines have stabilized or reversed since 2000 at most areas in Tucson Basin and Avra Valley.

Publication Year 2018
Title Groundwater-storage change and land-surface elevation change in Tucson Basin and Avra Valley, south-central Arizona--2003-2016
DOI 10.3133/sir20185154
Authors Robert L. Carruth, Libby M. Kahler, Brian D. Conway
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Scientific Investigations Report
Series Number 2018-5154
Index ID sir20185154
Record Source USGS Publications Warehouse
USGS Organization Arizona Water Science Center