High sensitivity of Bering Sea winter sea ice to winter insolation and carbon dioxide over the last 5,500 years
Anomalously low winter sea ice extent and early retreat in CE 2018 and 2019 challenge previous notions that winter sea ice in the Bering Sea has been stable over the instrumental record, although long-term records remain limited. Here, we use a record of peat cellulose oxygen isotopes from St. Matthew Island along with isotope-enabled general circulation model (IsoGSM) simulations to generate a 5500-year record of Bering Sea winter sea ice extent. Results show that over the last 5500 years, sea ice in the Bering Sea decreased in response to increasing winter insolation and atmospheric CO2, suggesting that the North Pacific is highly sensitive to small changes in radiative forcing. We find that CE 2018 sea ice conditions were the lowest of the last 5500 years, and results suggest that sea ice loss may lag changes in CO2 concentrations by several decades.
Citation Information
Publication Year | 2020 |
---|---|
Title | High sensitivity of Bering Sea winter sea ice to winter insolation and carbon dioxide over the last 5,500 years |
DOI | 10.1126/sciadv.aaz9588 |
Authors | Miriam C. Jones, Max Berkelhammer, Katherine Keller, Kei Yoshimura, Matthew J. Wooller |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Science Advances |
Index ID | 70213156 |
Record Source | USGS Publications Warehouse |
USGS Organization | Eastern Geology and Paleoclimate Science Center; Florence Bascom Geoscience Center |