Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey
The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock.
Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity.
The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and delineate the lithostratigraphy from multiple wells. Gamma-ray logs and rock cores were correlated to develop a 13-layer gamma-ray stratigraphy and 41-layer lithostratigraphy throughout the fractured sedimentary rock research site.
Detailed hydrogeologic framework shows that black carbon-rich laminated mudstones are the most hydraulically conductive. Water-quality and aquifer-test data indicate that groundwater flow is greatest and TCE contamination is highest in the black, carbon- and clay-rich laminated mudstones. Large-scale groundwater flow at the NAWC research site can be modeled as highly anisotropic with the highest component of permeability occurring along bedding planes.
Citation Information
Publication Year | 2010 |
---|---|
Title | Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey |
DOI | 10.1111/j.1745-6592.2010.01275.x |
Authors | Pierre J. Lacombe, William C. Burton |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Ground Water Monitoring and Remediation |
Index ID | 70004062 |
Record Source | USGS Publications Warehouse |
USGS Organization | New Jersey Water Science Center; Toxic Substances Hydrology Program |