Skip to main content
U.S. flag

An official website of the United States government

Hydrology and chemistry of selected prairie wetlands in the Cottonwood Lake area, Stutsman County, North Dakota, 1979-82

January 1, 1987

The relation of hydrologic setting and temporal variability in hydrology to nutrient content and geochemical characteristics of a group of prairie wetlands and adjacent ground water was studied during the period 1979-82. Although data were collected from many wetlands and wells at the study site, emphasis in this report primarily is on four wetlands two seasonal and two semipermanent and four wells contiguous to them along a hydrologic section. The seasonal wetlands, T8 and T3, contained water only for a few weeks to months after filling in spring and early summer; both were completely dry by August. The semipermanent wetlands, PI and P8, contained water throughout each year and were ice covered in winter. One wetland, T8, recharges ground water. Wetlands PI and P8 are in areas of ground-water discharge. None of the wetlands received water by channelized surface-water inlets. Only wetland P8 had a channelized surface-water outlet. Ground-water-level data showed that high points of the water table did not always occur beneath land-surface highs. Reversals of ground-water flow occurred occasionally between two of the wetlands, T3 and PI.

Significant differences existed in the chemical composition of the wetlands based on their hydrologic setting. In general, the dominant cation and anion in the wetlands were potassium and bicarbonate in wetland T8, calcium and sulfate in wetland T3, magnesium and sulfate in wetland PI, and magnesium and bicarbonate in wetland P8. Significant seasonal differences existed in the water chemistry of the wetlands in ground-water discharge areas. Water in three of the wetlands, T3, Pi, and P8, was most dilute while they filled in spring after icemelt. Concentration increased during the open-water period, and two of the wetlands, PI and P8, became most concentrated under ice cover. Concentrations of total phosphorus and total nitrogen were greatest in wetlands in areas of ground-water recharge and least in wetlands in areas of ground-water discharge. Differences in the chemistry of water from wells in the adjacent ground water resulted primarily from the positions of the wells in the ground-water flow system. The chemical type of water from well 12, which was located in a ground-water recharge area, was calcium sodium bicarbonate. Water from well 4, located downgradient from wetland T8, and from well 16, located downgradient from wetland PI, typically was a calcium sulfate type. Water from well 13, located between wetlands T3 and PI in an area of changing ground-water flow directions, was a magnesium sulfate type. Data from this study show that an understanding of hydrologic conditions is important in the interpretation of the water chemistry of wetlands in the study area.

Publication Year 1987
Title Hydrology and chemistry of selected prairie wetlands in the Cottonwood Lake area, Stutsman County, North Dakota, 1979-82
DOI 10.3133/pp1431
Authors J. W. LaBaugh, T. C. Winter, V. A. Adomaitis, G.A. Swanson
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Professional Paper
Series Number 1431
Index ID pp1431
Record Source USGS Publications Warehouse
USGS Organization North Dakota Water Science Center; Northern Prairie Wildlife Research Center; Dakota Water Science Center