Skip to main content
U.S. flag

An official website of the United States government

Improving predictions of fine particle immobilization in streams

December 4, 2019

Fine particles are critical to stream ecosystem functioning, influencing in-stream processes from pathogen transmission to carbon cycling, all of which depend on particle immobilization. However, our ability to predict particle immobilization is limited by: (1) availability of combined solute and particle tracer data and (2) identifying parameters that appropriately represent fine particle immobilization, due to the myriad of objective functions and model formulations. We found that improved predictions of the full distribution of possible fine particle residence times requires using an objective function that assesses both the peak and tailing together with solute tracers to constrain in-stream transport processes. The representation of immobilization processes was significantly improved when solute tracer data were combined with a particle model, starkly contrasting the common assumption that fine particles transport as washload. We develop a clear strategy for improving fine particle transport predictions, reshaping the potential role of fine particles in water quality management.

Citation Information

Publication Year 2019
Title Improving predictions of fine particle immobilization in streams
DOI 10.1029/2019GL085849
Authors Jennifer D. Drummond, Noah Schmadel, Christa Kelleher, Aaron I. Packman, Adam S Ward
Publication Type Article
Publication Subtype Journal Article
Series Title Geophysical Research Letters
Series Number
Index ID 70215094
Record Source USGS Publications Warehouse
USGS Organization WMA - Earth System Processes Division