Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment
Woody encroachment is a globally occurring phenomenon that contributes to the global carbon sink. The magnitude of this contribution needs to be estimated at regional and local scales to address uncertainties present in the global- and continental-scale estimates, and guide regional policy and management in balancing restoration activities, including removal of woody plants, with greenhouse gas mitigation goals. The objective of this study was to estimate carbon stored in various successional phases of woody encroachment. Using lidar measurements of individual trees, we present high-resolution estimates of aboveground carbon storage in juniper woodlands. Segmentation analysis of lidar point cloud data identified a total of 60,628 juniper tree crowns across four watersheds. Tree heights, canopy cover, and density derived from lidar were strongly correlated with field measurements of 2613 juniper stems measured in 85 plots (30 × 30 m). Aboveground total biomass of individual trees was estimated using a regression model with lidar-derived height and crown area as predictors (Adj. R2 = 0.76, p
Citation Information
| Publication Year | 2013 |
|---|---|
| Title | Lidar-derived estimate and uncertainty of carbon sink in successional phases of woody encroachment |
| DOI | 10.1002/jgrg.20088 |
| Authors | Temuulen Sankey, Rupesh Shrestha, Joel B. Sankey, Stuart Hardgree, Eva Strand |
| Publication Type | Article |
| Publication Subtype | Journal Article |
| Series Title | Journal of Geophysical Research: Biogeosciences |
| Index ID | 70093724 |
| Record Source | USGS Publications Warehouse |
| USGS Organization | Western Geographic Science Center |