Skip to main content
U.S. flag

An official website of the United States government

Mars reconnaissance orbiter's high resolution imaging science experiment (HiRISE)

January 1, 2007

The HiRISE camera features a 0.5 m diameter primary mirror, 12 m effective focal length, and a focal plane system that can acquire images containing up to 28 Gb (gigabits) of data in as little as 6 seconds. HiRISE will provide detailed images (0.25 to 1.3 m/pixel) covering ∼1% of the Martian surface during the 2‐year Primary Science Phase (PSP) beginning November 2006. Most images will include color data covering 20% of the potential field of view. A top priority is to acquire ∼1000 stereo pairs and apply precision geometric corrections to enable topographic measurements to better than 25 cm vertical precision. We expect to return more than 12 Tb of HiRISE data during the 2‐year PSP, and use pixel binning, conversion from 14 to 8 bit values, and a lossless compression system to increase coverage. HiRISE images are acquired via 14 CCD detectors, each with 2 output channels, and with multiple choices for pixel binning and number of Time Delay and Integration lines. HiRISE will support Mars exploration by locating and characterizing past, present, and future landing sites, unsuccessful landing sites, and past and potentially future rover traverses. We will investigate cratering, volcanism, tectonism, hydrology, sedimentary processes, stratigraphy, aeolian processes, mass wasting, landscape evolution, seasonal processes, climate change, spectrophotometry, glacial and periglacial processes, polar geology, and regolith properties. An Internet Web site (HiWeb) will enable anyone in the world to suggest HiRISE targets on Mars and to easily locate, view, and download HiRISE data products.

Publication Year 2007
Title Mars reconnaissance orbiter's high resolution imaging science experiment (HiRISE)
DOI 10.1029/2005JE002605
Authors Alfred S. McEwen, Eric M. Eliason, James W. Bergstrom, Nathan T. Bridges, Candice J. Hansen, W. Alan Delamere, John A. Grant, Virginia C. Gulick, Kenneth E. Herkenhoff, Laszlo P. Keszthelyi, Randolph L. Kirk, Michael T. Mellon, Steven W. Squyres, Nicolas Thomas, Catherine M. Weitz
Publication Type Article
Publication Subtype Journal Article
Series Title Journal of Geophysical Research E: Planets
Index ID 70029941
Record Source USGS Publications Warehouse
USGS Organization Astrogeology Science Center
Was this page helpful?