Skip to main content
U.S. flag

An official website of the United States government

Obtaining valid geologic models from 3-D resistivity inversion of magnetotelluric data at Pahute Mesa, Nevada

February 27, 2015

We summarize the results of a three-dimensional (3-D) resistivity inversion simulation that we conducted with the intent of characterizing the subsurface 3-D distribution of volcanic composite units of Pahute Mesa, Nevada, without any a priori information on the actual 3-D distribution of the known subsurface geology. The 3-D methodology involved using a 3-D geologic model based on drillhole data and average electrical resistivities of the key hydrostratigraphic units at Pahute Mesa to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was then assumed to represent observed magnetotelluric data and was used as input into a 3-D resistivity inverse model that was allowed to iteratively estimate in 3-D without any a priori geologic information, in particular, the thickness and resistivity of the volcanic composite units. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated.

The 3-D inversion was generally able to reproduce the gross resistivity structure of the “known” model, but the simulated conductive volcanic composite unit horizons were often too shallow when compared to the “known” model. Additionally, the chosen computation parameters such as station spacing appear to have resulted in computational artifacts that are difficult to interpret but could potentially be removed with further refinements of the 3-D resistivity inversion modeling technique.

Publication Year 2015
Title Obtaining valid geologic models from 3-D resistivity inversion of magnetotelluric data at Pahute Mesa, Nevada
DOI 10.3133/ofr20151019
Authors Brian D. Rodriguez, Donald S. Sweetkind
Publication Type Report
Publication Subtype USGS Numbered Series
Series Title Open-File Report
Series Number 2015-1019
Index ID ofr20151019
Record Source USGS Publications Warehouse
USGS Organization Crustal Geophysics and Geochemistry Science Center