Skip to main content
U.S. flag

An official website of the United States government

Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

March 11, 2016

The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the 40-m.y.-younger ore-bearing porphyritic granodiorite is sub-alkaline and peraluminous. They are enriched in LREEs and LILEs, depleted in HFSEs, and show weak negative Eu anomalies. They displayεHf(t) values of captured or inherited zircons in the range of +8.5 to +10.0, and younger two-stage Hf model ages of 0.78 Ga and 0.86 Ga, similar to those of ca. 485 Ma tonalite. The ca. 445 Ma zircons have εHf(t) values of −2.1 to +9.9, with two-stage Hf model ages of 0.75–1.27 Ga. Moreover, they have relatively high oxygen fugacity than that of the precursor barren tonalite. The ca. 445 Ma magmas at Wangdian thus formed in a subduction setting, and incorporated melts from the subduction-modified lithosphere that had previously been enriched by additions of chalcophile and siderophile element-rich materials by the earlier magmatism and metasomatism during the Paleo Qilian-Qinling Ocean subduction event.