Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA
Climate scientists have concluded that the earth’s surface air temperature warmed by 0.6 °C during the 20th century, and that warming induced by increasing concentrations of greenhouse gases is likely to continue in the 21st century, accompanied by changes in the hydrologic cycle. Climate change has important implications in the Catskill region of southeastern New York State, because the region is a source of water supply for New York City. We used the non-parametric Mann–Kendall test to evaluate annual, monthly, and multi-month trends in air temperature, precipitation amount, stream runoff, and potential evapotranspiration (PET) in the region during 1952–2005 based on data from 9 temperature sites, 12 precipitation sites, and 8 stream gages. A general pattern of warming temperatures and increased precipitation, runoff, and PET is evident in the region. Regional annual mean air temperature increased significantly by 0.6 °C per 50 years during the period; the greatest increases and largest number of significant upward trends were in daily minimum air temperature. Daily maximum air temperature showed the greatest increase during February through April, whereas minimum air temperature showed the greatest increase during May through September. Regional mean precipitation increased significantly by 136 mm per 50 years, nearly double that of the regional mean increase in runoff, which was not significant. Regional mean PET increased significantly by 19 mm per 50 years, about one-seventh that of the increase in precipitation amount, and broadly consistent with increased runoff during 1952–2005, despite the lack of significance in the mean regional runoff trend. Peak snowmelt as approximated by the winter–spring center of volume of stream runoff generally shifted from early April at the beginning of the record to late March at the end of the record, consistent with a decreasing trend in April runoff and an increasing trend in maximum March air temperature. This change indicates an increased supply of water to reservoirs earlier in the year. Additionally, the supply of water to reservoirs at the beginning of winter is greater as indicated by the timing of the greatest increases in precipitation and runoff—both occurred during summer and fall. The future balance between changes in air temperature and changes in the timing and amount of precipitation in the region will have important implications for the available water supply in the region.
Citation Information
Publication Year | 2007 |
---|---|
Title | Recent climate trends and implications for water resources in the Catskill Mountain region, New York, USA |
DOI | 10.1016/j.jhydrol.2006.12.019 |
Authors | Douglas A. Burns, Julian Klaus, Michael R. McHale |
Publication Type | Article |
Publication Subtype | Journal Article |
Series Title | Journal of Hydrology |
Index ID | 70029705 |
Record Source | USGS Publications Warehouse |